вторник, 15 марта 2016 г.

Героин, радий и еще 5 смертельных веществ, которые раньше свободно продавались в аптеках

 

Лосьон из асбеста и героин для грудных детей? В наш век всеобщей паранойи, когда люди косо смотрят даже на гематоген, подобные вещи кажутся дикостью. И все же это факт: когда-то смертельные вещества свободно продавались в аптеках и даже прописывались врачами.

 1  Истина в свинце 
Героин, радий и еще 5 смертельных веществ, которые раньше свободно продавались в аптеках

Древние римляне вовсю использовали свинец, пихая его то в краску для росписи тарелок, то в водопро­водные трубы, вопреки многочисленным преду­преждениям кесаревых инженеров. А ацетат свинца они и вовсе добавляли в вино, чтобы оно было слаще. Понятное дело, травились в больших количествах — таких, что теперь историки размышляют, не были ли причиной падения империи психические расстройства, которые свинец вызывает, попадая в организм. 

 2  Старших надо слушать  
Героин, радий и еще 5 смертельных веществ, которые раньше свободно продавались в аптеках

Римский историк Плиний Старший считал, что одежда, пропитанная асбестом, «защитит от всех наговоров, даже тех, что напускают волхвы». Ладно бы один Плиний. Все римляне пропитывали асбестом скатерти, чтобы те не горели. (Легко со стола убирать: сунул скатерть в огонь, а достал уже чистую.) Занятно, что Плиний при этом не советовал покупать рабов, поработавших на асбестовых каменоломнях. «Они рано умирают», — писал он.

 3   Опиум для народа  
Героин, радий и еще 5 смертельных веществ, которые раньше свободно продавались в аптеках

Средневековый врач Парацельс всей Европе прописывал опиум как обезболивающее. А поскольку был еще и в маркетинге силен, то переименовал опиум в «лауданум» — «во здравие». Лечили им, как аспирином, все, от насморка до поноса. Ч. Диккенс даже прибегал к нему, когда плохо сочинялось. О коварстве опиума заговорили лишь в XVIII веке, да и то в связи с тем, что несколько человек отравились, приняв его вместе с камфорой.

 4   Завтрак для идиотов  
Героин, радий и еще 5 смертельных веществ, которые раньше свободно продавались в аптеках

Роберт Лойбл, глава компании, производившей ДДТ, был настолько уверен в безвредности пестицида, что даже взялся доказать это на себе. Три месяца он пичкал им себя и жену, отмечая полное отсутствие отрицательных эффектов и даже испытывая прилив энергии. Позднейшие исследования показали, что ДДТ и правда нетоксичен: он лишь вызывает рак и отложенные неврологические перекосы.

 5   Героин в массы  
Героин, радий и еще 5 смертельных веществ, которые раньше свободно продавались в аптеках

Молодые мамаши в 1898 году пачками скупали героин от фирмы Bayer для своих детишек — как отличное средство от ОРВИ. Его вскоре одобрила даже Американская медицинская ассоциация как не формирующую зависимость замену морфию. Ой как ошибочно одобрила! Когда стали поступать тревожные сигналы, Bayer признала свою ошибку и лекарство с производства в 1913 году сняла. Но еще 10 лет героиновые таблетки, леденцы и эликсиры продолжали продаваться всем желающим.

 6   Кстати, о камфоре  
Героин, радий и еще 5 смертельных веществ, которые раньше свободно продавались в аптеках

В середине XIX века считалось, что камфора помогает от истерии, холеры и подагры. Потом, правда, медики разобрались, что камфора токсична, и ей пришлось делать карьеру в отрасли фейерверков. Однако и сегодня камфора содержится в разных массажных мазях и кремах, успокаивающих зуд, на упаковке которых красуется надпись: «Проглотил — немедленно беги в промывочное отделение!»

 7   Могила светлячков  
Героин, радий и еще 5 смертельных веществ, которые раньше свободно продавались в аптеках

Чего только не лечит радий! В 1920-х его добавляли и в зубной порошок, и в мыло, и даже в противозачаточные средства. Был даже эликсир долголетия под названием «Радитор». Сталелитейный магнат Эбен Байерс выпил около 1400 бутылочек этого средства за несколько лет и умер после операции по удалению челюсти, когда кости в его теле стали разлагаться. К счастью, из-за него популярность напитка резко пошатнулась, и многим любителям радия удалось уцелеть.

  Обратный пример: практика мягкого ввода  
Героин, радий и еще 5 смертельных веществ, которые раньше свободно продавались в аптеках
В 1930-х был открыт фтор — побочный продукт производства алюминия. Его считали страшным токсином, что жутко не нравилось людям из Alcoa, знавшим о дезинфицирующих свойствах фтора. На помощь им пришел рек­ламщик Эдвард Бернайз. Он уговорил одного издателя включить в словарь термин «фторирование»: мол, во всем мире так называют насыщение фтором водопроводной воды. А потом сунул словарь градоначальникам: давайте и мы будем воду фторировать!

WADA не узнает: медики предлагают "прокачивать" мозг спортсменов током

 http://www.vesti.ru/doc.html?id=2731044&cid=2161

Лыжник слева тестирует действие мозговой стимуляции
(иллюстрация Halo).
Команда врачей клиники Halo Neuroscience из Сан-Франциско озадачилась вопросом – может ли стимуляция мозга электрическим током улучшить производительность прыгунов на лыжах с трамплина и помочь им с лёгкостью осваивать новые навыки?
Другие исследования уже показали, что целенаправленная стимуляция мозга может уменьшить утомляемость спортсмена. Как считают медики, подобные технологии помогут восстановиться после травмы или же обеспечить "мозговой допинг", который позволит получить преимущество перед конкурентами.
Представители Halo Neuroscience утверждают, что стимуляция помогает мозгу строить новые связи во время выработки навыка. В ходе эксперимента технология тестировалась на семи элитных прыгунах, в числе которых были и олимпийские спортсмены.
Четыре раза в неделю в течение 14 дней лыжники прыгали с трамплина на неустойчивую платформу. Четверо спортсменов получали транскраниальную микрополяризацию во время обучения. В конечном счёте сила прыжков этих спортсменов увеличилась на 70%, а координация на 80% по сравнению с контрольной группой.
Однако в настоящее время данные результаты не являются однозначным свидетельством эффективности технологии, так как эксперименты проводились лишь на небольших группах спортсменов (даже несмотря на то, что результаты были весьма обнадёживающими). Также очень сложно будет воспроизвести подобный эксперимент, так как люди по-разному реагируют на стимуляцию мозга (по-хорошему, она должна подбираться индивидуально).
Добавим, что в пользу эльктростимуляции мозга говорят и другие научные работы. Так, британские исследователи из Кентского университета показали, что стимуляция двигательной области коры мозга, контролирующей функцию ног, позволяет велосипедистам крутить педали дольше, не чувствуя усталости.
Исследователи стимулировали мозг 12 необученных добровольцев, а затем просили их крутить педали велотренажёров до тех пор, пока у них не заканчивались силы. Каждую минуту они просили велосипедистов оценивать их усилия.
Добровольцы, которые получали стимуляцию, смогли крутить педали в среднем на две минуты дольше, чем контрольная группа. При этом не было обнаружено никакой разницы в частоте сердечных сокращений и в уровнях молочной кислоты в мышцах представителей обеих групп. По всей видимости, причина изменения производительности заключалась в изменениях восприятия мозга.
По мнению исследователей, однако, "мозговой допинг" представляет опасность для спортивных соревнований: дело в том, что такого рода вмешательство обнаружить невозможно, поэтому, наверняка, многие спортсмены будут пытаться получить такого рода стимуляцию.
Научная статья об исследовании была опубликована в издании Journal of Physiology.
Добавим, что не так давно учёные рассказали об эксперименте, в ходе которого молодых пилотов обучали навыкам профессионалов с помощью мозговых волн последних.

SARMs / Cелективные модуляторы андрогенных рецепторов



SARMs (абр. от англ. Selective androgen receptor modulator) — селективные модуляторы андрогенных рецепторов. По тому же принципу, что и SERMs — селективные модуляторы эстрогенных рецепторов, к которым относятся общеизвестные кломифен и тамоксифен, SARMs способны присоединяться к рецепторам половых гормонов, только не женских, а мужских - андрогенов и взаимодействовать с ними. Но не имея такой же структуры, как анаболические стероиды, SARMs не поддаются воздействию ферментов, преобразовывающих тестостерон в иные соединения, обладающие нежелательными для здоровья эффектами.

Создавая данный класс препаратов, ученые рассчитывали снизить неблагоприятное воздействие тестостерона на простату. Как это принято, прежде всего любые вещества и соединения исследуют на животных; в случае получения положительных эффектов и удостоверившись в безопасности их приема, проводят клинические исследования на людях, после чего запускают в производство. Часто одних только положительных результатов в опытах на крысах бывает достаточно, чтобы препарат попал в поле зрения «химических» спортсменов и те начали самостоятельно испытывать его на себе.

Примерно такая же ситуация сложилась и с SARMs — как только об этом детище Джеймса Далтона начали писать в доступной литературе, сообщив, что их прием приводит к росту мышечной массы, они тут же нелегальным путем оказались в руках культуристов. Одним из первых, несмотря на неоднозначные выводы исследований, в этом числе оказался Andarine, более известный в мире спорта как ‘S4′. А после него практически сразу и Ostarine, известный как GTX-024. Оба препарата уже вовсю реализовывались в интернет-магазинах, прежде чем появились официальные подтверждения того, что Ostarine действительно способствует приросту мышечной массы у людей и относительно безопасен в применении. Однако в спорте высших достижений и при угрозе антидопингового контроля остарин является крайне рискованным и нежелательным препаратом, так как его метаболиты определяются в течение трех месяцев и более - в зависимости от дозы и индивидуальных особенностей метаболизма у спортсмена. Данных по другим САРМам пока нет.

Так, в сентябре 2011 года в журнале «Кахексия, саркопения и мышцы» (‘Journal Cachexia Sarcopenia Muscle’), стр. 153 — 161, появилась статья с говорящим за себя названием «Селективный модулятор андрогенных рецепторов GTx-024 улучшает мышечную массу и физические функции у здоровых пожилых мужчин и женщин в постменопаузе: результаты двойного слепого, плацебо-контролируемого исследования фазы II». В данной статье были приведены результаты приема GTx-024, отнесенные учеными к статистически значимым: 12-ти недельный курс орального приема 3 мг препарата приводит к приросту сухой мышечной массы, равному 1,4 кг и снижению жировой массы в 300 грамм при отсутствии каких-либо физических нагрузок. Более низкие дозировки вещества привели к менее выраженным результатам. Официальный вывод исследователей прозвучал так: GTx-024 показал дозозависимое улучшение общей мышечной массы тела и физических функций, хорошо переносится. GTx-024 может быть полезен для профилактики и/или лечения катаболизма мышечной массы, связанной с раком и другими хроническими заболеваниями». Может быть, 1,4 кг мышечной массы за 12 недель не так много, но это официально полученный и зафиксированный результат.

В настоящее время фармацевтические компании имеют несколько видов SARMs, в отношении которых первые стадии клинических исследований на людях были успешно завершены и которые могут уже скоро появиться в легальной продаже, а до того времени, уже наверняка сформируется практика их применения в спортивных целях, однако, в настоящий момент даже исходя из небольшого объема вышеприведенной информации, можно получить представление о дозировке, длительности приема и побочных эффектах.

ГАМК: СПИ, МОЯ РАДОСТЬ, УСНИ

 


 

История открытия некоторых нейромедиаторов порой поражала своей закрученностью: сначала адреналин открыли путём введения подопытным экстракта надпочечников, потом оказалось, что при нанесении вытяжки из блуждающего нерва напрямую на сердце подопытного животного сердце замедляет свой ритм из-за ацетилхолина. Подобных историй можно найти много, однако история открытия ГАМК (гамма-аминомасляной кислоты) выбивается из общего ряда. Я бы даже сказал, что в данном случае история открытия прямо коррелирует с физиологическими эффектами этого нейромедиатора:
1883 год – Первые сообщения о синтезе ГАМК, вне контекста фармакологии и физиологии
1950 год – Во время изучения химического состава мозга позвоночных с помощью бумажной хроматографии было выделено в больших количествах соединение, реагировавшее с нингидрином. Причём данное соединение находилось именно в нервной ткани – ганглии, мозг –  и только следовые количества его могли быть обнаружены в крови, моче и иных биологических жидкостях. В дальнейшем это соединение было идентифицировано Робертсом и Франкелем как ГАМК.
То есть в истории открытия ГАМК отсутствует какой бы то ни было экстрим, азарт, эйфория и безудержное веселье, наблюдавшееся в опытах с, например, блокаторами холинорецепторов.
Так что же представляет собой ГАМК? Вот же она:
500px-Gamma-Aminobuttersäure_-_gamma-aminobutyric_acid.svg
Простенькая аминокислота, которая выполняет уйму функций, не ограничиваясь нейромедиаторными.
В организме ГАМК синтезируется из глутаминовой кислоты (он же – глутамат) с помощью фермента глутаматдекарбоксилазы (GAD) и в присутствии витамина В6 в качестве кофактора. Сама же глутаминовая кислота образуется следующими путями:
Исходные соединенияПродуктыФермент
Глутамин + H2OГлутамат + аммиакGLS (глиальная глутаминаза) и GLS2 (печёночная глутаминаза)
N-ацетилглутаминовая кислота + H2OГлутамат + уксусная кислотаN-ацетилглутаматсинтетаза
Альфа-кетоглутарат + NADPH + NH4+Глутамат + NADP+ + H2OGLUD1, GLUD2 (глутаматдегидрогеназа 1 и 2)
Альфа-кетоглутарат + любая альфа-аминокислотаГлутамат + альфа-кетокислотаСпецифические трансаминазы
Дельта-1-пирролин-3-гидрокси-5-карбоксилат + NAD+ + H2OГлутамат  + NADHALDH4A1 (специфическая альдегиддегидрогеназа)
N-ацетиласпартилглутаматГлутамат  + N-ацетиласпартатГлутаматкарбоксипептидаза 2
Интересно также, что глутамат, будучи биохимическим предшественником ГАМК, является возбуждающим нейромедиатором, и ГАМК при определённых условиях способна превращаться обратно в глутамат по биохимическому пути называемому «ГАМК-шунт»: ГАМК-трансаминаза, которая тоже использует витамин В6 как кофактор, превращает ГАМК в янтарный полуальдегид, который превращается дегидрогеназой янтарного полуальдегида в янтарную кислоту, которая в свою очередь участвует в цикле Кребса. В цикле Кребса вырабатывается альфа-кетоглутарат, из которого синтезируется глутамат.
Биосинтез ГАМК и ГАМК-шунт
Биосинтез ГАМК и ГАМК-шунт
Окончательный катаболизм ГАМК возможен на стадии янтарного полуальдегида, когда он реагирует не со специфической дегидрогеназой, а с альдокеторедуктазой, в результате чего получается ГОМК – гамма-оксимасляная кислота. Её натриевую или магниевую соль, например, принято в определённых кругах и называть бутиратом, ну или пляс-водой. Это соединение тоже имеет определённое фармакологическое действие на ЦНС человека, однако оно быстро распадается в конечном итоге до углекислого газа и воды.


Функции ГАМК
ГАМК как нейромедиатор
В качестве нейромедиатора ГАМК выполняет в первую очередь тормозящие функции. Активируя ГАМК-рецептор на поверхности клеточной мембраны, она открывает ионный канал, который пропускает ионы [Cl ] внутрь клетки или выпускает [K+] из неё в межклеточное пространство. Оба этих действия ведут к гиперполяризации мембраны нейрона. Во время периода гиперполяризации, который длится всего несколько миллисекунд, невозможна генерация разности потенциалов между внешней и внутренней стороной мембраны нейрона, что ведёт к задержке в передаче нервного импульса. На уровне же организма это ведёт к задержке при реакции на внешние раздражители или стимулы. Похожий механизм наблюдается в схеме действия агонистов мю-опиоидных рецепторов, которые через цепь посредников так же, как и ГАМК, открывают ионный канал, который выпускает ионы калия из клетки, не давая ей возможности создать разность потенциалов.
Также интересно, что если в полностью сформировавшемся мозге ГАМК выполняет тормозящие функции, то в развивающемся мозге этот же нейромедиатор может работать в качестве возбуждающего. В опытах на нейронах новорождённых крыс было обнаружено повышение внутриклеточной концентрации Ca2+ при добавлении в перфузат ГАМК, и это кардинально отличается от того, что происходит во взрослом мозге, где при активации ГАМК-рецепторов концентрация Са2+, наоборот, снижается. В том же эксперименте было показано, что повышение концентрации ионов кальция в нейронах новорождённых крыс может быть заблокировано путём перфузии антагонистом ГАМК-А рецепторов бикукуллином, либо блокатором кальциевых каналов L-типа нимодипином. Механизм, по которому происходит переключение роли ГАМК с возбуждающего нейромедиатора на тормозящий, в настоящее время изучен недостаточно.
Существует три типа ГАМК-рецепторов: ГАМК-А, ГАМК-Б и ГАМК-С (иногда указывается как ГАМК-ро). ГАМК-А и ГАМК-С являются ионотропными (бикукуллин и пикротоксин –чувствительные), ГАМК-Б – метаботропным (баклофен-чувствительный) рецептором. Стоит отметить, что ГАМК-А и ГАМК-С (иногда – ро/rho) рецепторы иногда объединяются в одну группу.
Ионотропные ГАМК рецепторы состоят из пяти субъединиц и служат каналами для хлорид-ионов. По своему составу и функциям белковые субъединицы также могут различаться, образуя различные комбинации с различными функциями.
Пример: (α1)2(β2)2(γ2)-ГАМК-рецептор (следует читать как – две альфа1-субъединицы, две бета2-субъединицы и одна гамма2-субъединица). На границах альфа-1 и бета-2 субъединиц расположен сайт связывания ГАМК, чьё присоединение напрямую открывает ионный канал. На границе гамма-2 и альфа-1 субъединиц расположен сайт связывания бензодиазепинов – при его активации специфическим лигандом (любым лекарственным веществом класса бензодиазепинов) ионный канал не открывается, однако увеличивается чувствительность рецепторного комплекса к ГАМК и иным лигандам этого сайта связывания.
Пример: (α1)2(β2)2(γ2)-ГАМК-рецептор (следует читать как – две альфа1-субъединицы, две бета2-субъединицы и одна гамма2-субъединица). На границах альфа-1 и бета-2 субъединиц расположен сайт связывания ГАМК, чьё присоединение напрямую открывает ионный канал. На границе гамма-2 и альфа-1 субъединиц расположен сайт связывания бензодиазепинов – при его активации специфическим лигандом (любым лекарственным веществом класса бензодиазепинов) ионный канал не открывается, однако увеличивается чувствительность рецепторного комплекса к ГАМК и иным лигандам этого сайта связывания.

Субъединицы ГАМК-А рецептора (включая присутствующие в ГАМК-ро рецепторе)
СубъединицаКодирующий генФункции и связанные патологии
Альфа-1 (α1)GABRA1Белок GABRA1, для того что бы стать активным, должен быть фосфорилирован. Интересно, что фосфорилирование в этом случае является гликолиз-зависимым, так как помимо киназ в этом процессе задействована глицеральдегид-3-фосфатдегидрогеназа (GAPDH). Соответственно уровень фосфорилирования альфа-1 субъединиц коррелирует с уровнем потребления глюкозы клеткой. Нарушения процесса фосфорилирования альфа-1 субъединицы связаны с такими заболеваниями как ювенильная миоклоническая эпилепсия – в образцах коры головного мозга людей, страдавших этим заболеванием, этот белок являлся менее фосфорилированным, чем у здоровых.
Альфа-2 (α2)GABRA2Мутации в гене GABRA2 имеют положительную корреляцию с вероятностью развития алкоголизма. Также альфа-2 субъединица интересна тем, что лиганды ГАМК-А рецептора, осуществляющие своё связывание преимущественно через эту субъединицу (пример- L-838,417), показали способность купировать нейропатическую боль, либо боль вследствие воспаления, не оказывая побочных эффектов в виде седации, что присуще лигандам, связывающимся через альфа-1 субъединицу.
Альфа-3 (α3)GABRA3Мутации гена GABRA3 связаны с развитием рака лёгких и гепатоцеллюлярной карциномы. Также альфа-3 субъединица является мишенью для ГАМК-эргических анальгетиков (таких как L-838,417, связывающийся также и с альфа-2 субъединицей).
Альфа-4 (α4)GABRA4Рецепторы, содержащие альфа-4 субъединицу, являются нечувствительными к 1,4-бензодиазепинам.
Альфа-5 (α5)GABRA5У некоторых людей обнаруживается полная или частичная дупликация гена GABRA5. Он расположен на длинном плече 15 хромосомы, в регионе, который обычно подвергается делеции при синдромах Ангельмана и Прадера-Вилли. Антагонисты ГАМК-рецепторов, содержащих альфа-5 субъединицу, в настоящее время проходят испытание для коррекции когнитивных нарушений при синдроме Дауна. (напр. RO5186582, он же Басмисанил)
Альфа-6 (α6)GABRA6Как и альфа-4, эта субъединица не связывает классические 1,4-бензодиазепины. Рецепторы, содержащие альфа-6 субъединицу, находятся главным образом в мозжечке, где участвуют в процессах координации движений. Также интересно, что уровни экспрессии генов GABRA6 и GABRD (дельта субъединица) каким-то образом взаимосвязаны: при снижении экспрессии GABRA6 наблюдается и снижение экспрессии GABRAD.
Бета-1 (β1)GABRB1При шизофрении, биполярном расстройстве и большом депрессивном расстройстве наблюдается изменение экспрессии гена GABRB1 в боковых участках мозжечка. Также мутации этого гена связаны с большей вероятностью развития алкоголизма.
Бета-2 (β2)GABRB2Мутации этого гена связаны с риском развития шизофрении и когнитивными нарушениями, при ней возникающими. Также в некоторых исследованиях установлена связь между мутациями  GABRB2 и риском развития диссоциального расстройства личности.
Бета-3 (β3)GABRB3Как и GABRA5, ген GABRB3 расположен на длинном плече 15 хромосомы и утрачивается при синдромах Ангельмана и Прадера-Вилли. Сниженная экспрессия гена GABRB3 наблюдается при аутизме.
Гамма-1 (γ1)GABRG1Оба гена GABRG1 и GABRG2 кодируют гамма-субъединицы ГАМК-рецептора, которые ответственны (наряду с определёнными вариантами альфа-субъединиц) за связывание с бензодиазепинами.
Гамма-2 (γ2)GABRG2Полиморфизмы в гене GABRG2 связаны со сниженным порогом судорожной готовности и сниженной чувствительностью к аллостерической регуляции ГАМК-рецептора ионами цинка. Также гамма-2 субъединица взаимодействует с белком GABARAP (белок, связывающийся с ГАМК-рецептором), который в свою очередь также регулирует процессы аутофагии.
Гамма-3 (γ3)GABRG3Участвует в аллостерической регуляции активности ГАМК-рецептора ионами цинка. Также мутации в нём могут быть ещё одним маркером предрасположенности к алкоголизму.
Дельта (δ)GABRDМутации в этом гене играют роль в вероятности развития эпилепсии. Также GABRD  связаны с ранним дебютированием психических заболеваний. Путём альтернативного сплайсинга и посттрансляционной модификации получаются три типа дельта-субъединицы – 1A, 1B и 1C.
Эпсилон (ε)GABREВо время беременности в регионах продолговатого мозга, ответственных за дыхание, наблюдается увеличение ГАМК-рецепторов с эпсилон-субъединицей. Также гиперметилирование гена GABRE наблюдается при раке простаты, и в настоящее время выдвинуто предложение по использованию этого генетического маркера для диагностики и прогноза при лечении этого типа рака.
Пи (π)GABRPНаибольшая экспрессия гена GABRP наблюдается в матке. ГАМК-рецепторы, содержащие пи-субъединицу, являются чувствительными к стероидным гормонам: нейростероидам (в случае ЦНС) и эстрогенам с андрогенами (ткани вне ЦНС).
Тета (θ)GABRQПредположительно, мутации в GABRQ связаны с ранним паркинсонизмом. Также повышенная экспрессия GABRQ обнаруживается в клетках гепатоцеллюлярной карциномы – для опухолевых клеток, в которых присутствует данная мутация, ГАМК является стимулятором опухолевого роста. Иногда мутации GABRQ обнаруживаются при аутизме.

ГАМК-ро рецепторы (они же ГАМК-С) также относятся к ионотропным и также, как и ГАМК-А рецепторы, участвуют в транспорте хлорид-ионов. Также как и ГАМК-А рецепторы, ГАМК-ро рецепторы являются пентамерными, но в отличие от ГАМК-А они могут состоять из одинаковых субъединиц (т.е. быть гомопентамерными — (ρ15, ρ25, ρ35)). В ГАМК-ро рецепторе могут присутствовать только ро-субъединицы, хотя есть и исключение: ρ1 может входить в состав ГАМК-А рецепторов, содержащих как минимум одну гамма-2 субъединицу. Отличительной их особенностью является большее время, на которое открывается ионный канал при активации рецептора: ГАМК-А рецепторы активируются и инактивируются очень быстро – ионный канал открывается на время до 5 миллисекунд, в то время как ГАМК-ро рецепторы могут провести в открытом состоянии до 15-20 миллисекунд. Несмотря на то, что эти рецепторы являются ионтропными, они не проявляют чувствительности к бикукуллину и не блокируются пикротоксином (как ГАМК-А рецепторы), также они нечувствительны к баклофену (как ГАМК-Б рецепторы). У них также отсутствует чувствительность к бензодиазепинам, барбитуратам и нейростероидам. Избирательными агонистами являются (+)-CAMP и цис-4-аминокротоновая кислота, а антагонистами —  TPMPA и оксид азота (I). Следует заметить, что оксид азота (I) в отношении ρ1-гомопентамерного ГАМК-ро рецептора является положительным аллостерическим модулятором.

СубъединицаКодирующий генФункции и связанные патологии
Ро (ρ1)GABRR1Мутации в гене субъединицы связаны с риском развития пигментного ретинита.
Ро (ρ2)GABRR2Так же, как и в GABRR1, мутации GABRR2 способны повышать риск развития пигментного ретинита. Имеются статистические данные, доказывающие связь между мутацией этого гена и вероятностью развития алкогольной зависимости.
Ро (ρ3)GABRR3У некоторых людей присутствует SNP мутация, делающая данную субъединицу неактивной – тимин в 732 позиции гена GABRR3 заменяется на аденин, в результате чего кодон ТА(Т) превращается в ТА(А). В результате чего при трансляции вместо присоединения тирозина происходит обрыв синтеза белка, т.к. ТАА является стоп-кодоном. Ген GABRR3, в отличие от GABRR1 и 2, которые расположены на длинном плече 6 хромосомы, располагается на длинном плече 3 хромосомы (3q11-q13).
ГАМК-Б рецепторы являются метаботропными. В отличие от ГАМК-А и ро рецепторов, которые непосредственно осуществляют транспорт ионов хлора, ГАМК-Б рецепторы влияют на внутриклеточную концентрацию ионов калия путём открытия калиевых ионных каналов через цепь вторичных посредников. Этот тип рецепторов связан с Gi-белком, который осуществляет внутриклеточную сигнализацию путём ингибирования аденилатциклазы и последующего снижения конверсии АТФ в цАМФ. При этом повышается активность ионного канала для калия GIRK (главным образом GIRK3). Пресинаптические ГАМК-Б рецепторы при своей активации также снижают проницаемость мембраны для ионов кальция, что задерживает выброс нейромедиаторов в межсинаптическое пространство. ГАМК-Б рецептор является гетеродимерным и состоит из двух субъединиц: ГАМК-Б1 и ГАМК-Б2.

СубъединицаКодирующий генФункции и связанные патологии
ГАМК-Б1GABBR1Путём альтернативного сплайсинга гена GABBR1 образуется несколько версий этой субъединицы; in vivo такие изменения обнаруживаются при различных зависимостях, в т.ч. и при алкоголизме. Мутации регуляторной области гена GABBR1 повышают вероятность шизофреноподобных расстройств.
ГАМК-Б2GABBR2Эта субъединица непосредственно участвует в передаче сигнала в клетку и в запуске цепи вторичных мессенджеров. Мутации в GABBR2 повышают вероятность развития никотиновой зависимости, мигрени. Сниженный уровень экспрессии этого гена наблюдался в некоторых случаях шизофрении и расстройств личности.
Отличительной особенностью ГАМК-рецепторов является то, что они расположены буквально везде – постсинаптически, пресинаптически и даже экстрасинаптически, вне региона синаптического контакта. Большая часть рецепторов к ГАМК находится на следующих типах клеток:
Тип клетокОтличительные особенности рецепторов
Dendrite targeting interneuron В основном присутствуют ГАМК-А рецепторы, содержащие альфа-5 субъединицу в своём составе
Нейроглиаформные клеткиПрисутствуют ГАМК-А рецепторы с альфа-1 субъединицей и значительное количество ГАМК-Б рецепторов
Парвальбумин-положительные корзинчатые клеткиВ основном присутствуют ГАМК-А рецепторы с альфа-1 субъединицей
Холецистокинин-положительные интернейроныВ основном ГАМК-А рецепторы с альфа-2 или альфа-3 субъединицами 
Канделябровидные клеткиОбнаруживается много ГАМК-А рецепторов с альфа-2 субъединицами

Схема ГАМК-эргического синапса.
Схема ГАМК-эргического синапса.
Одним из самых изученных подтипов ГАМК-эргических нейронов являются канделябровидные клетки. Они расположены в коре, формируют контакты исключительно с пирамидальными нейронами и участвуют в «фильтрации» импульсов с пирамидальных нейронов к другим клеткам. Канделябровидные клетки богаты ферментами глутаматдекарбоксилазой и GAT-1; первый участвует в синтезе ГАМК, а второй – в обратном захвате этого нейромедиатора. Несмотря на тормозящее действие, они способны к быстрой генерации импульсов, и, согласно современным данным, могут быть двух видов – парвальбумин-положительные (PV-positive) и парвальбумин-негативные (PV-negative). Также интересно, что при ИГХ-окрашивании срезов мозга людей, страдавших шизофренией, антителами к глутаматдекарбоксилазе, в канделябровидных клетках обнаружено значительное снижение количества этого фермента, что в свою очередь вызывало снижение тормозящей функции этих клеток.
Вставить – Канделябровидная клетка. Тело нейрона и дендриты указаны синим цветом, аксон – красным.
Вставить – Канделябровидная клетка. Тело нейрона и дендриты указаны синим цветом, аксон – красным.
Фармакология ГАМК-рецепторов
Как и должно быть по канонам истории, лиганды этого рецептора были известны человеку задолго до изобретения слова «лиганд» и задолго до, собственно, выделения каких-либо действующих веществ из натурального сырья. В данном случае под натуральным сырьём стоит понимать обычную валериану лекарственную, которая известна человечеству ещё с античности и использовалась в лечении различных форм «одержимости», так как раньше считалось, что большая часть психических заболеваний вызывалась именно злыми потусторонними силами. Стоит отметить, что за две с половиной тысячи лет, показания к применению экстрактов валерианы лекарственной не претерпели существенных изменений: бессонница, беспокойство, нервные тики, и, самая писечка, женская истерия. Очевидно, что в данном случае имеется ввиду лечение недостатка витамина Е в организме и психозы на фоне ПМС. Касательно ПМС и ГАМК – среди фармакологов ходит легенда, что бедного будапештского химика жена так терроризировала во время ПМС, что он изобрёл тофизопам, более известный отечественному читателю как грандаксин.
И на счёт валерианы стоит добавить, что из нескольких активных веществ, в ней содержащихся, большая часть так или иначе является агонистами, либо положительными аллостерическими модуляторами, ГАМК-рецепторов. Сюда входят: валериановая кислота, изовалериановая кислота (прямые агонисты) и валереновая кислота с изовалерамидом (аллостерические модуляторы).
Всё бы было хорошо, но человеку свойственно иногда иметь желание подрыгать конечностями. На этот случай присутствуют антагонисты ГАМК-рецепторов. В исторической ретроспективе самым распространённым и известным ГАМК-блокатором является туйон, компонент абсента, который настоян на полыни горькой. Учёные долгое время считали это вещество, основывая свои выводы на его нетипичной структуре, лигандом каннабиноидных рецепторов, однако исследования показали, что он избирательно блокирует ГАМК-А рецепторы. К эффектам туйона относят ксантопсию (изменение цветового восприятия в сторону жёлтого цвета) и галлюцинации. Хотя автор пил абсент в больших количествах, единственный эффект которым могу похвастаться, была лишь лёгкая ксантопсия.
Туйон
Туйон
Та самая "Зеленая фея"
Та самая «Зеленая фея»
Первыми синтетическими лигандами ГАМК-рецепторов были хлоральгидрат, синтезированный Юстусом Либихом в 1832 году, и барбитал, синтезированный в 1902 году Фишером и Мерингом. Позже, в 1955 году, Лео Штернбах открыл способность хлордиазепоксида подавлять тревогу, таким образом открыв для фармакологии эру бензодиазепинов. Примерно в это же время в США патентуют метаквалон, тоже продвигая его в качестве безопасного заменителя барбитуратов. В 1962 году был изобретён баклофен, избирательно активировавший ГАМК-Б рецепторы и благодаря которому этот подкласс ГАМК-рецепторов был выделен отдельно от ГАМК-А рецепторов.
К тому времени уже было известно, что ГАМК как таковая неспособна при пероральном приёме или внутривенном введении пересечь гематоэнцефалический барьер. Эта возмутительная фича в фармакодинамике ГАМК подвигла советских учёных изобрести в 1969 году пикамилон – пролекарство, являющееся ГАМК, «сшитой» с никотиновой кислотой. Такое соединение хорошо преодолевает ГЭБ, и уже за ГЭБом гидролизуется на собственно никотиновую кислоту и ГАМК.
Пикамилон. Пролекарство, являющееся предшественником ГАМК.
Пикамилон. Пролекарство, являющееся предшественником ГАМК.
Из новинок линейки стоит отметить прегабалин – вещество, открытое в середине нулевых, но уже завоевавшее популярность и одобрение пациентов. Несмотряна его структурное сходство  с ГАМК, оно не является ни аллостерическим модулятором, ни прямым агонистом. Оно взаимодействует с α2δ-субъединицей кальциевого ионного канала. Ионные каналы, содержащие эту субъединицу, располагаются в основном на ГАМК-эргических нейронах; соответственно, их активация вызывает последующую активацию ГАМК-рецепторного комплекса. Данное вещество продаётся под торговым названием «Лирика». Стоит заметить, что старый агонист ГАМК-Б рецепторов, фенибут, наряду с прямым действием на эти рецепторы, так же как и прегабалин, имеет аффинитет к кальциевым ионным каналам, содержащим α2δ-субъединицу.
Прегебалин, он же «Лирика», он же СЕЙЧАС ЗАТУСИМ ПОСОНЫ.
Прегабалин, он же «Лирика», он же СЕЙЧАС ЗАТУСИМ ПОСОНЫ.
К большому сожалению, человек – существо ленивое. Ему хочется просто лежать на диване под транками и ничего не делать. В результате чего получилась ситуация, когда в медицинской практике применяются десятки агонистов ГАМК-рецепторов и лишь один антидот при отравлении ими – флумазенил. Его дозы составляют несколько сотен микрограмм: при острой фазе отравления ГАМК-агонистами его вводят по 200 мкг в минуту; эффект интоксикации проходит через 5 минут. Рекомендуется использовать не более 3мг (3000мкг) в час.
Флумазенил – ваш билет из сонного царства обратно в объективную реальность.
Флумазенил – ваш билет из сонного царства обратно в объективную реальность.
Хотя, конечно, не всегда желание заблокировать ГАМК-рецепторы связано с необходимостью проснуться от долгого и качественного сна, вызванного транквилизаторами. Иногда это делается с целью убить кого-либо. Существует целая группа соединений, называемая «судорожными ядами». Они делятся на три группы:
  • Блокаторы путей синтеза ГАМК
  • Блокаторы ГАМК-рецепторов
  • Блокаторы высвобождения ГАМК
К первой группе относятся некоторые гидразиновые соединения, в том числе и ранние неселективные и необратимые ИМАО (например, фенелзин в больших количествах). Они действуют по двум путям: либо блокируют ГАМК-трансаминазу, либо в случае соединений с малым молекулярным весом (гидразин, несимметричный диметилгидразин) вступают в реакцию с витамином В6, образуя пиридоксальгидразон, который уже не может выступать кофактором в процессах синтеза ГАМК.
Стоит отметить, что в случае отравления блокаторами синтеза ГАМК наблюдается относительно продолжительный скрытый период в отравлении: это связано с тем, что в глиальных клетках, окружающих ГАМК-эргический нейрон, имеются некоторые запасы ГАМК, которые могут использоваться в случае чего. Терапия – витамин В6 в больших количествах, для снятия судорог можно использовать диазепам.
Механизм действия гидразина и образование пиридоксальгидразона.
Механизм действия гидразина и образование пиридоксальгидразона.
Ко второй группе можно отнести в основном блокаторы ГАМК-А рецепторов – бикукуллин, пикротоксин (являющийся эквимолярной смесью пикротинина и пикротина), упоминавшийся выше туйон и довольно интересное соединение – вещество Мидлтона (иногда обозначают как норборнан). Крайне реакционноспособное каркасное соединение, сайт связывания которого находится в области, наиболее близкой к ионному каналу. Это вещество связывается с рецептором необратимо, терапии нет, смерть неизбежна, Россия – наше отечество. К счастью, оно применяется лишь в исследованиях.
Норборнан
Интересным соединением также является ДСТА, которое имеет схожий механизм действия и, по некоторым данным, использовалось как яд от вредителей.
ДСТА
ДСТА
Также существуют соединения класса бициклофосфатов, которые, в отличие от иной ядовитой фосфорорганики, действуют через ГАМК-рецепторы. К счастью, из-за их физико-химических свойств они не являются подходящими кандидатами для принятия на вооружение, так что они также используются лишь в нейрофизиологических исследованиях.
К ингибиторам высвобождения ГАМК можно отнести бактериальный токсин тетанотоксин, вырабатываемый Clostridium tetani (столбнячная палочка). Его строение и функции во многом похожи на ботулотоксин, правда, в отличие от ботулотоксина, который нарушает высвобождение возбуждающего нейромедиатора ацетилхолина, тетанотоксин блокирует высвобождение везикул с ГАМК, являющимся тормозящим нейромедиатором. В данном случае лечение имеется как и этиотропное (введение противостолбнячной сыворотки), так и симптоматическое (миорелаксанты и транквилизаторы).
Так что будьте спокойны: для этого у современной науки есть все средства.

Источники:
http://themedicalbiochemistrypage.org/nerves.php        Michael W King, PhD
«Военная токсикология, радиобиология и медицинская защита», С. А. Куценко
«Regulation of adult neurogenesis by GABAergic transmission: signaling beyond GABAA-receptors», Marta Pallotto, Francine Deprez
«Effects of GABA Receptor Antagonists on Retinal Glycine Receptors and on Homomeric Glycine Receptor Alpha Subunits», Peiyuan Wang, Malcolm M. Slaughter
«Use of concatamers to study GABAA receptor architecture and function: application to δ-subunit-containing receptors and possible pitfalls» Erwin Sigel, Kuldeep H. Kaur, Benjamin P. Lüscher, Roland Bau
«Inhibition in the Nervous System and Gamma-aminobutyric Acid», Roberts, E., Baxter, C.F., Van Harreveld, A., Wiersma, C.A.G., Adey. W.R., and Killam, K.F.
«The Biochemical Basis of Neuropharmacology», Jack R. Cooper,Floyd E. Bloom,Robert H. Roth