вторник, 24 сентября 2013 г.

Топ-10 продуктов питания для повышения выносливости



 

Для работников офисов, рабочий день которых проходит преимущественно пассивно, существует множество рекомендаций, как улучшить общее самочувствие, память, повысить концентрацию, внимание… словом – как облегчить работу. А вот людям, работающим физически, нередко приходится искать пути повышения работоспособности самостоятельно. Именно для них и предназначен этот рейтинг продуктов, способных снимать усталость и повышать выносливость организма.

Топ-10 продуктов питания для повышения выносливости

Рейтинг продуктов, способных повышать выносливость организма, предотвращая все признаки усталости в течение долгого трудового дня:

1. Томатный сок.

Обогащает мощнейшими антиоксидантами (особое место занимает ликопин).

Томатный сок

2. Кофеин.

Отличный вариант для максимального высвобождения энергии и повышения тонуса.

Кофеин

3. Изюм:

- улучшает клеточное питание;
- насыщает кровь кислородом;
- нормализует работу головного мозга.

Изюм

4. Свекла:

- способствует облегчению дыхания;
- повышает выносливость организма;
- активно насыщает кровь кислородом.

Свекла

5. Красные ягоды.

Спортивные медики настоятельно рекомендуют своим подопечным вместо питьевой воды использовать ягодные морсы, которые повышают болевой порог организма, восполняя баланс антиоксидантов и витаминов в организме.

Красные ягоды

6. Зеленые листовые овощи.

Способствуют повышению мышечного тонуса.

Зеленые листовые овощи

7. Яблоки.

В значительной степени повышают выносливость организма перед физическими тренировками.

Яблоки

8. Имбирь.

Отлично снимает мышечное напряжение и болевой синдром.

Имбирь

9. Бананы.

Поддерживают нормальную деятельность сердечно-сосудистой системы.

Бананы

10. Йогурт.

Универсально-полезный продукт питания (идеально подходит работникам как умственного, так и физического труда).

Йогурт

Повышение физической выносливости (препараты, средства)


 
Существующие классификации фармакологических средств повышения выносливости выделяют как минимум 4 класса этих средств [Смирнов А. В., 1989]:
  • истощающего (или мобилизующего) действия;
  • неистощающего (экономизирующего, метаболического) действия;
  • смешанного действия;
  • с вторичным положительным влиянием на работоспособность (устраняющие частные симптомы, снижающие работоспособность, например нитропрепараты у больных со стенокардией).
К средствам истощающего типа действия относятся такие психомоторные стимуляторы, как сиднокарб, фенаминкофеин. В годы Великой Отечественной войны в армиях воюющих стран, в том числе и в авиации, применялись психостимуляторы из группы фенилалкил аминов и препараты колы. Однако попытки экстренной мобилизации психофизиологических функций с их помощью во многом ограничивались побочными действиями фенамина и относительно частой (до 15 % случаев) парадоксальной реакцией на препарат. В качестве стимуляторов экстренного действия в настоящее время широко применяются такие препараты, как мезокарбсиднофен, пиридрол, меридил и их аналоги. Несмотря на различные точки приложения, для этих препаратов характерна активация медиаторного звена с быстрым вовлечением в энергетическое обеспечение выполняемой деятельности резервов организма. Недостатками этих препаратов являются высокая степень индивидуальной вариабельности эффекта, его выраженная Зависимость от степени утомления, необходимость длительного полноценного отдыха после применения препарата, срыв переносимости гипоксии и гипертермии, избыточная активация симпатической нервной системы [Бобков Ю. Г., Виноградов В. М., 1982; Смирнов А. В., 1989]. К представителям этой группы стали также относить селективные бета-адреномиметики преимущественно центрального действия — модафинил, адрафинил и т. п. [Сейфулла Р. Л., Орджоникидзе 3. Г., 2003].
К средствам неистощающего типа действия относятся препараты из классов актопротекторов (бемитил, томерзол, яктон), стероидных (ретаболил,станазол) и нестероидных анаболиков (рибоксин), ноотропов (пирацетам, ацефен), адаптогенов (препараты элеутерококкародиолыженьшеня), а также естественных для организма энергодаюших соединений и субстратов (витаминыаминокислоты, макроэрги). Эти препараты имеют метаболический механизм действия, не вызывают истощения резервных возможностей организма и могут применяться в течение длительного времени [Виноградов В. М., 1982; Бобков Ю. Г. и др., 1982, 1984; Смирнов А. В., 1989; Шустов Е. Б. и др., 1994).
Основным представителем средств смешанного действия является дексаметазон. Дексаметазон относится к синтетическим глюкокортикоидам. Глюкокортикоиды стимулируют глюконеогенез в печени, аминокислоты метаболизируются с образованием глюкозы (катаболическое действие), подавляют поглощение и использование глюкозы клетками (антиинсулиновое действие), уменьшают транспорт аминокислот и синтез белков в мышечных клетках (антианаболическое действие), но увеличивает синтез белка в печени. Поглощение глюкозы жировыми клетками и образование триглицеридов в них под воздействием глюкокортикоидов снижаются, в крови увеличивается концентрация жирных кислот за счет усиления распада триглицеридов. При стрессе глюкокортикоиды играют пермиссивную (разрешающую) роль в действии катехоламинов. В высоких дозах и при длительном применении глюкокортикоиды приводят к мышечной дистрофии, остеопорозу. Глюкокортикоиды угнетают иммунитет и образование антител, уменьшают образование соединительной ткани.
Средства, повышающие физическую выносливость, устраняют частные симптомы, снижающие работоспособность при различных патологических состояниях или воздействии неблагоприятных факторов внешней среды. Нитраты повышают физическую выносливость у больных со стенокардией, радиопротекторы — при воздействии больших доз ионизирующего излучения и т. д.
Исходя из механизмов развития утомления и снижения работоспособности оптимальным является применение препаратов метаболического действия, а основными путями фармакологической коррекции работоспособности при длительной физической нагрузке умеренной интенсивности являются [Бобков Ю. Г., Виноградов В. М., 1982]:
  • активация глюконеогенеза;
  • активация проникновения глюкозы в клетку и неэтерифицированных жирных кислот в митохондрии;
  • борьба с лактацидемией и ацидозом;
  • восполнение дефицита субстратов и электролитов;
  • поддержание сопряжения окисления и фосфорилирования.
Активация организма при интенсивных физических нагрузках приводит к избирательному увеличению вклада в дыхание митохондрий наиболее мощного процесса энергообеспечения — окисления янтарной кислоты [Сейфулла Р. Д., Орджоникидзе 3. Г., 2003]. Это обусловлено включением более быстрого, чем цикл трикарбоновых кислот, цикла окисления, который представляет собой шунт цикла Кребса глутамат-оксалоацетат-трансаминазой, приводящей к ускоренному образованию бета-кетоглутарата и сукцината в обход узких мест окисления лимонной кислоты. При более интенсивном воздействии окисление сукцината усиливается, переходя в гиперактивацию. Одновременно развивается встречный процесс — ступенчатое ингибирование сукцинатдегидрогеназы и торможение окисления сукцината. Этот процесс протекает под взаимным контролем симпатической и парасимпатической регуляции, так как катехоламины усиливают окисление сукцината с образованием АТФ, а под влиянием ацетилхолина усиливается субстратное фосфорилирование при окислении β-кетоглутарата с образованием ГТФ — участника пластических процессов. Включение быстрого цикла влечет за собой важные последствия: митохондрии вырабатывают больше фосфоенолпирувата, который может служить не только субстратом глюконеогенеза, но и источником пирувата. Таким образом, митохондрии переходят на самообеспечение глюкозой. Внешним субстратом вместо глюкозы становятся глутаминовая кислота и ее предшественники. Активация быстрого цикла обеспечивается аминокислотами, витаминами В6 и В2, сукцинатом. Введение сукцината предупреждает гиперактивацию и ингибирование окисления сукцината при стрессе, ускорение ресинтеза АТФ, фосфокреатина, гликогена после физических нагрузок.
П. П. Денисенко (1980) полагает обязательным для повышения физической выносливости использование средств, ведущих к повышению образования макроэргов в условиях дефицита кислорода, мембранностабилизаторов, снижающих теплопродукцию и повышающих теплоотдачу. По мнению Л. В. Пастушенкова (1980), подобными свойствами обладают гутимин, амтизол, мефексамид и их аналоги, которые устраняют характерные для дефицита энергии функциональные и биохимические изменения как в мышечной ткани, так и в миокарде и ЦНС.
Рис. 3. Классификация средств фармакологической коррекции физической выносливости человека.
В результате клинических исследований выраженная способность препарата тонибрал ускорять повышение физической выносливости после истощающих нагрузок [Наталенко В. П., 1986]. Близкие свойства описывают и для растительных адаптогенов [Дардымов И. В., 1976].

Актопротекторы и антигипоксантыправить

Актопротекторы в настоящее время представлены производными бензимидазола. Наиболее широко используется препарат бемитил, применявшийся, в частности, в качестве средства поддержания работоспособности спасателей, участвовавших в ликвидации последствий землетрясения в Армении, катастрофы под Уфой, аварии на Чернобыльской АЭС [Смирнов А. В., 1989]. Клинические испытания в 90-х годах XX в. прошел более активный препарат из этой же группы — томерзол. Производные бензимидазола активируют синтез РНК и белка в различных органах. В результате усиливается образование ферментов энергетического обмена, митохондриальных белков, антиоксидантаых ферментов, а также ферментов глюконеогенеза. Препараты оказывают «экономизирующее» действие на мышечную ткань, кардиореспираторную, нервную и другие системы. Экономизация происходит на фоне предупреждения гипогликемии в ходе нагрузок, уменьшения уровня лактата и мочевины крови, уменьшения теплопродукции и потребления кислорода на единицу работы, лучшего сохранения фонда гликогена в органах, более высокого энергетического потенциала, содержания РНК в тканях, подавления избыточной активности перекисного окисления липидов [Смирнов А. В., 1989]. Действие актопротекторов более выражено в тех органах и тканях, которые характеризуются короткоживущими быстро восстанавливаемыми РНК и белками. Для обеспечения мышечной деятельности важно усиление синтеза ферментов глюконеогенеза, обусловливающих утилизацию лактата и ресинтез расходуемых углеводов. Большое значение имеет активация синтеза митохондриальных белков, проявляющаяся в поддержании высокой активности окислительных ферментов, уменьшении разобщения окисления с фосфорилированием и, как следствие, приводящая к увеличению образования АТФ и уменьшению теплопродукции на единицу потребляемого кислорода и окисляемого субстрата.

Аминокислотыправить

Аминокислоты эффективны и как простые неспецифические субстраты для синтеза белка, и как специфические медиаторы, предшественники ферментов и медиаторов.
ВСАА — Branch chain amino acids — это три аминокислоты с разветвленными цепями из класса алифатических аминокислот — L-изолейцин, L-лейцин, L-валин. В отличие от других аминокислот, ВСАА метаболизируются в мышцах, а не в печени. Около 35 % массы мышечных клеток образуется за счет ВСАА. Аминокислоты с разветвленными цепями обеспечивают покрытие 10 % энергетических потребностей в период напряженных тренировок. ВСАА восстанавливают запасы гликогена в мышцах, снижают катаболизм в мышцах, проявляют антагонизм с триптофаном. Лейцин облегчает синтезглютамина.
Использование ВСАА особенно важно для лиц, придерживающихся низкоуглеводной диеты. Описано эффективное применение у бегунов на длинные дистанции напитка, содержащего 16 г аминокислот (L-изолейцина — 15 %, L-лейцина — 35 %, L-валина — 50 %) в 5 % углеводном растворе. Больший прирост скорости отмечен у слабых бегунов. Рекомендуется принимать ВСАА за 30—40 мин до нагрузки и сразу после нагрузки.
L-карнитин был открыт русским ученым В. Г. Гулевичем, который впервые обнаружил его в мышечной ткани и отнес к группе экстрактивных веществ. Лечебное действие карнитина было описано раньше, чем расшифрована его химическая структура. Карнитин поступает в организм с пищей, но также может образовываться в печени из глутаминовой кислоты.
L-карнитин выпускается фармацевтической промышленностью под международным названием левокарнитин (Levo-camitine).
L-карнитин оказывает анаболическое, антигипоксическое, антитиреоидное, регенерирующее действие, стимулирует жировой обмен.
L-карнитин относится к группе витаминов В (Вт —«витамин роста»). Препарат является кофактором метаболических процессов, обеспечивающих поддержание активности КоА. Оказывает анаболическое действие, снижает основной обмен, замедляет распад белковых и углеводных молекул. L-карнитин способствует проникновению через мембраны митохондрий и расщеплению длинноцепочечных жирных кислот (пальмитиновой и др.) с образованием ацетил-КоА (необходим для обеспечения активности пируваткарбоксилазы в процессе глюконеогенеза, образования кетоновых тел, синтеза холи на и его эфиров, окислительного фосфорилирования и образования АТФ). L-карнитин оказывает жиромобилизующее действие, обусловленное наличием трех лабильных метильных групп. Конкурентно вытесняя глюкозу, включает жирнокислотный метаболический шунт, активность которого не лимитирована кислородом (в отличие от аэробного гликолиза), поэтому эффективен при острой гипоксии мозга и других критических состояниях.
L-карнитин высокоэффективен для повышения выносливости при выполнении как аэробных, так и анаэробных нагрузок. Вызывает незначительное угнетение ЦНС, повышает секрецию и ферментативную активность пищеварительных соков (желудочного и кишечного), улучшает усвоение пищи. Снижает избыточную массу тела и уменьшает содержание жира в мускулатуре. L-карнитин повышает порог резистентности к физической нагрузке, приводит к ликвидации после-нагрузочного ацидоза и, как следствие, к повышению физической выносливости после длительных истощающих физических нагрузок. Увеличивает запасы гликогена в печени и мышцах, способствует более экономному его использованию. L-карнитин оказывает нейротрофическое действие, тормозит развитие апоптоза, ограничивает зону поражения и восстанавливает структуру нервной ткани.
При приеме внутрь хорошо всасывается, уровень в плазме достигает максимума через 3 ч и сохраняется в терапевтическом диапазоне в течение 9 ч. Легко проникает в печень и миокард, медленнее — в мышцы. Выводится почками преимущественно в виде ацильных эфиров.
L-карнитин применяется внутрь, за 30 мин до еды, с большим количеством жидкости, взрослым 2—3 раза в сутки по 0,5-1 г.
L-карнитин выпускается под торговыми наименованиями Карнитон, Карнифит, Элькар.
Карнитин является смесью D- и L-форм аминокислоты, отличается от L-карнитина значительно меньшей активностью, так как D-форма не только не активна, но и может конкурентно взаимодействовать с L-формой в активных центрах. После внутривенного введения карнитин через 3 ч практически полностью выводится из крови. Легко проникает в печень и миокард, медленнее — в мышцы. Выводится почками преимущественно в виде ацильных эфиров. Карнитин применяется при ишемическом инсульте (в остром, восстановительном периодах), преходящем нарушении мозгового кровообращения, дисциркуляторной энцефалопатии, травматических и токсических поражениях головного мозга.
Креатин моногидрат повышает активность фосфокреатина в скелетных мышцах, который ускоряет восстановление АТФ. Увеличивает силу мышечных сокращений при анаэробной работе (показатели взрывной силы). Прием креатина увеличивает массу тела за счет увеличения кал и перометрических показателей мышечной массы. Дозировка — 20—30 г в сутки. Прием креатин моногидрата в растворе простых углеводов, с фосфатами, таурином (1 г на каждые 5 г креатина моногидрата) увеличивает его биодоступность.
Фосфокреатин (phosphocreatine, неотон) оказывает кардиопротективное, мембраностабилизирующее, антиаритмическое, метаболическое действие. Препарат улучшает метаболизм миокарда, внутриклеточный транспорт энергии, тормозит деструкцию сарколеммы ишемизированных кардиомиоцитов. Стимулирует микроциркуляцию, уменьшает размеры и препятствует расширению зоны некроза и ишемии. В условиях ишемии и постишемической реперфузии проявляет антиаритмический эффект: подавляет эктопическую активность желудочков без нарушения проводимости по волокнам Пуркинье. Введение фосфокреатина в кровь способствует улучшению и восстановлению сократительной функции сердечной мышцы, но мало влияет на скелетные мышцы.
Фосфат креатина плохо всасывается в желудке. Фосфокреатин проходит гистогематические барьеры и накапливается в миокарде, мозге, скелетной мускулатуре. Элиминирование двухфазное: период полувывсдения быстрой фазы — 20—30 мин, медленной — несколько часов. Экскретируется с мочой.
Внутримышечно фосфокреатин применяется в дозе 0,5—1 г в сутки; внутривенно — по 1—2 г в сутки.
L-глутамин составляет около 60 % аминокислот в мышцах. На фоне стресса и повышения секреции кортизола происходит выход глутамина из мышц в кровь для активизации иммунных клеток крови. Поэтому необходимо применение глутамина для поддержания его концентрации в мышцах. Участвует в транспорте аммиака из мышц и мозга. Предшественник глутаминовой кислоты и глутатиона. Доза — 2—3 г в сутки.
Глутаминовая кислота (glutamic acid, L-глутаминовая кислота) — заменимая аминокислота, поступает в организм с пищей, а также синтезируется в организме при переаминировании в процессе катаболизма белков. Участвует в белковом и углеводном обмене, стимулирует окислительные процессы, препятствует снижению окислительно-восстановительного потенциала, повышает устойчивость организма к гипоксии. Глутаминовая кислота нормализует обмен веществ, изменяя функциональное состояние нервной и эндокринной систем.
Глутаминовая кислота является нейромедиаторной аминокислотой, стимулирует передачу возбуждения в синапсах ЦНС. Участвует в синтезе других аминокислот, ацетилхолина, АТФ, способствует переносу ионов калия, улучшает деятельность скелетной мускулатуры (является одним из компонентов миофибрилл). Оказывает дезинтоксикационное действие, способствует обезвреживанию и выведению из организма аммиака. Нормализует процессы гликолиза в тканях, оказывает гепатопротекторное действие, угнетает секреторную функцию желудка.
При приеме внутрь глутаминовая кислота хорошо всасывается, проникает через ГЭБ и клеточные мембраны. Утилизируется в процессе метаболизма, 4—7 % выводится почками в неизмененном виде.
Противопоказаниями к применению глутаминовой кислоты являются: гиперчувствительность, лихорадка, печеночная и/или почечная недостаточность, нефротический синдром, язвенная болезнь желудка и двенадцатиперстной кишки, заболевания кроветворных органов, анемия, лейкопения, повышенная возбудимость, бурно протекающие психотические реакции, ожирение.
При применении глутаминовой кислоты возможно развитие побочных эффектов: повышенной возбудимости, бессонницы, боли в животе, тошноты, рвоты, диареи, аллергических реакций, озноба, кратковременной гипертермии; при длительном применении — анемии, лейкопении, раздражения слизистой оболочки полости рта, образование трещин на губах.
Применяется внутрь, за 15—30 мин до еды по 1 г 2—3 раза в сутки. Длительность курса от 1—2 до 6—12 мес.
Метионин (methionine, а — амино — у — метилмеркапто-масляная кислота) — незаменимая аминокислота. Восполняет дефицит аминокислот, оказывает метаболическое (анаболическое) и гепатопротективное действие.
Метионин регулирует азотистый баланс. Содержит подвижную метильную группу и участвует в процессах метилирования, обеспечивающих синтез холина, адреналина, креатина и других биологически важных соединений, обезвреживание токсичных продуктов, образование фосфолипидов. Метионин тормозит отложение в печени нейтрального жира, оказывает липотропный эффект (удаление из печени избытка жира). Модулирует эффект гормонов и витаминов (В12, аскорбиновой и фолиевой кислот).
Метионин применяется внутрь, за 0,5—1 ч до еды —по 0,5—1,5 г 3—4 раза в день. Курсовое применение в течение 10—30 дней или по 10 дней с 10-дневными перерывами.
Фенилаланин и тирозин являются предшественниками дофамина, адреналина, норадреналина и тироксина. Передача возбуждения с постганглионарных нервных окончаний симпатической нервной системы на клетки эффекторных органов в основном осуществляется норадреналином. Незаменимая аминокислота фенилаланин является исходным продуктом биосинтеза норадреналина. В печени она гидроксилируется и превращается в тирозин (тирозин может поступать и с пищей). Тирозин в цитоплазме нервного окончания окисляется в диоксифенилаланин (ДОФА) и декарбоксилируется. Образующийся дофамин в некоторых структурах мозга, например в экстрапирамидной системе, является медиатором. С помощью особой транспортной системы дофамин переносится в везикулу, где дофамингидроксилаза превращает его в норадреналин. Фенилаланин и тирозин не проникают через гематоэнцефалический барьер. Для образования тироксина тирозин йодируется в щитовидной железе.
Таурин (taurine, 2-аминоэтансульфоновая кислота) — аминокислота, образующаяся в организме в процессе превращения цистеина. Оказывает метаболическое, регенерирующее, кардиотоническое, противосудорожное, антикатарактное действие.
Играет большую роль в липидном обмене, способствует нормализации функции клеточных мембран, оптимизации энергетических и обменных процессов, сохранению электролитного состава цитоплазмы (за счет накопления ионов калия и кальция), входит в состав парных желчных кислот (таурохолиевой, тауродезоксихолиевой), способствующих эмульгированию жиров в кишечнике. Таурин в головном мозге выполняет функцию нейромеднатора, тормозящего синаптическую передачу, обладает противосудорожной и кардиотонической активностью. Вызывает нормализацию метаболизма тканей глаза при заболеваниях дистрофического характера. Стимулирует выработку инсулина.
Применяется внутрь по 0,25—0,5 г 2 раза в день за 20 мин до еды. Длительность курса — 30 дней. При необходимости доза может быть увеличена до 2—3 г в сутки.
Витаминно-минеральные комплексы
При выполнении тяжелой физической работы увеличивается потребность в витаминах и минералах. Для ее коррекции применяются специально разработанные поливитаминно-минеральные формулы типа витрум-стресс, глутамивит, витатресс.

Глюкоза


 

Буланов Ю.Б., врач

Что мы знаем о глюкозе? Казалось бы уже все, что можно было узнать давно уже узнано и используется. Однако жизнь показывает что это не так. Мы постоянно узнаем что-то новое, неизвестное ранее, что-то уточняем и корректируем. Ведь наука не стоит на месте.
Все мы знаем о том, что глюкоза – основной энергетический субстрат организма. Хоть и содержит она калорий вдвое меньше чем жиры, но окисляется намного быстрее и легче, чем любые другие вещества, способные поставлять организму энергию.
Все углеводы всасываются в кишечнике. Существует так называемый, «гликемический индекс», который позволяет нам сравнить скорость всасывания отдельных углеводов. Если принять скорость всасывания глюкозы за 100, то, соответственно, величина для галактозы будет 110, для фруктозы 43, маннозы – 19, пентозы 9-15. Все моносахариды попадая в клетки слизистой оболочки кишечника фосфорируются, т.е. образуют фосфорные сложные эфиры. Только в таком виде углеводы могут включиться в энергетический обмен. Фосфориирование происходит при участии специальных ферментов, которые активизируются инсулином. Все бы хорошо, но вот беда: во время тяжелой физической работы, во время прохождения соревновательной дистанции или длительной круговой тренировки на выносливость, выброс в кровь инсулина постоянно снижается, иначе он будет тормозить распад гликогена, жировых и белковых запасов до глюкозы. Однако глюкоза, выбрасываемая в кровь плохо утилизируется мышцами из-за недостатка инсулина, ведь она не может фосфорилироваться. Возникает замкнутый порочный круг, каких немало в организме: чтобы насытить кровь работающего организма глюкозой необходимо избавиться от избытка инсулина, а чтобы использовать полученную таким образом глюкозу организму не хватает инсулина, чтобы ее фосфорилировать. Получается ни то, ни се. Организм секретирует инсулин, но чуть-чуть, чтобы хватило и вашим и нашим, чтобы распадался гликоген и в то же время чтобы глюкоза хоть как-то усваивалась работающими мышцами. Где же выход? Он оказался до чрезвычайности прост: необходимо синтезировать фосфорилированные углеводы, углеводы с уже присоединенными фосфорными остатками. Тогда и волки будут сыты и овцы целы. Организм может хоть совсем прекратить выработку инсулина. Фосфорилированные углеводы моментально всасываются в кишечнике, никто не берется даже подсчитать их гликемический индекс и моментально включаются в обмен. Фосфорилированные углеводы это новая веха в спортивном питании на дистанции и во время тренировок. Их прием позволяет проводить тренировки с невиданной доселе эффективностью и организовать питание на дистанции, например, стайеров так, что все спортивные достижения резко улучшатся. Фосфорилированные углеводы – это отличное средство для карбогидратной загрузки, для посттренировочной загрузки углеводами. Их применение позволяет значительно повысить устойчивость организма к гипоксии (недостатку кислорода в тканях) и значительно ускорить посттренировочное восстановление. Интересно то, что будучи принятыми внутрь, фосфорилированные углеводы резко увеличивают гликемический индекс обычных, нефосфорилированных углеводов. Это происходит потому, что сахара всасываются в кишечнике по концентрационному градиенту. Фосфорилированные углеводы быстро включаются в энергетический обмен и в клетках кишечника концентрация свободных моносахаридов становится намного меньше, чем в просвете кишечника. Отсюда и ускорение всасывания.
В развитых странах такие препараты выпускаются уже много лет. Так, например, препарат «фруктэргил» представляет из себя не что иное, как фруктозо-1,6-дифафат-фосфорилированный углевод, которые моментально включается в обмен с выходом большого количества энергии. Выпускается глюкозо-1-фосфат, глюкозо-6-фосфат и т.д.
Все эти препараты выпускаются под разными коммерческими названиями и очень широко используются как в спорте, так и в повседневной жизни для скорейшего снятия утомления. Большинство из этих препаратов синтезировано и используется для лечения и профилактики утомления во Франции и Италии. Постепенно создается новая индустрия, индустрия лекарств для здорового человека, где грань между лекарством и пищей незаметна и порой бывает трудно отличить одно от другого.
Советскими[1] учеными Чаплыгиной и Басковичем был создан оригинальный отечественный препарат «гексозофосфат». Гексозофосфат состоял из смеси глюкозо-1-фосфата, глюкозо-6-фосфата, фруктозо-6-фосфата и фруктозо 1,6 дифосфата. Препарат был с большим успехом апробирован, нов серийное производство почему-то не пошел. Почему так случилось, сейчас остается только гадать.
Все мы знаем как важен для продолжительной мышечной работы постоянный стабильный уровень сахара в крови. Нее все однако, знают, что мышцы использовать в своей работе сахар не могут (!). Они захватывают из кровотока глюкозу с одной единственной целью, пополнить запасы гликогена. Мышцы непосредственно расщепляют гликоген для совершения физической работы и вновь синтезируют его из глюкозы и частично из пировиноградной и молочной кислоты. Чем выше спортивная квалификация атлета, тем выше его способность синтезировать гликоген из молочной кислоты (в которую, в конечном итоге превращается пировиноградная кислота).
Сахар (глюкоза) компонент внутренний среды как позвоночных, так и беспозвоночных. Наиболее постоянен уровень сахара в крови натощак у человека и высших позвоночных животных. Напомним, что кровь человека содержит 70-120 мг/?[2] сахара. Птицы отличаются очень высоким уровнем сахара крови (150-200 мг/?), что обусловлено их очень высоким метаболизмом. Но самым высоким содержанием сахара в организме отличаются пчелы (до 3000 (!) мг/?). Не зря они приносят нам мед. такого содержания в организме сахара (глюкоза+фруктоза) нет более ни у одного живого существа.
В последние годы был обнаружен очень интересный феномен. Оказалось, что включение глюкозы во внутриклеточный обмен прямо пропорционально скорости ее проникновения внутрь клетки. Все факторы, ускоряющие транспорт глюкозы (фосфорилирование и др.) будут приводить к ускорению углеводного метаболизма.
Интенсивная аэробная нагрузка, приводящая к развитию выраженного энергетического дефицита в мозге, мышцах, сердце, печени и др. работающих органах может в 2-2,5 раза ускорить как скорость проникновения глюкозы внутрь клетки, так и ее включение в обмен.
С жировой тканью ситуация совершенно иная. В условиях больших аэробных нагрузок проникновение глюкозы в жировые клетки начисто тормозится. Если учесть, что 90% жира синтезируется из углеводов (глюкозы), можно понять, почему все бегуны на длинные дистанции такие тощие-претощие.
Пробовали выяснить, что больше влияет на включение глюкозы в метаболизм: скорость транспорта или фосфорилирование? Для этого ткани насыщались большими концентрациями глюкозы (400-500 мг/?) и в конце концов торжественно объявили, что лидирующим фактором является все-таки фосфорилирование. При дальнейшем нарастании концентрации глюкозы только от фосфорилирования зависила скорость ее включения в обмен. Вот мы опять вернулись к фосфорилированным углеводам. И видит око, да зуб неймет.
В каких органах самая высокая скорость транспорта глюкозы? В эритроцитах и в печени она на порядок (!) выше, чем в других тканях и здесь эта скорость определяется фосфорилированием.
Все мы знаем, что животные жиры вредны, а растительные полезны. Хотя злые языки давно уже поговаривают о том, что свободнорадикальное отношение??????????????? растительными жирами намного сильнее, чем животными (акад. Дильман В.М и др.). Но кто бы мог подумать, что растительные жиры принимают самое активное участие в переносе углеводов через клеточные мембраны. Что зависит от скорости такого переноса, мы уже знаем. Оказывается, самое обычное увеличение в рационе дозы растительных масел значительно активизирует инсулин и изменяет жидкостные свойства клеточных мембран, делая их более проницательными для глюкозы (Mukherjec L.P. etal 1980 г.).
Во всех каталогах, расхваливающих аминокислотные смеси написано, что прием аминокислот стимулирует выброс в кровь соматропина и инсулина, которые являются естественными «анаболиками» организма. Инсулин при этом по логике вещей должен стимулировать утилизацию глюкозы тканями. Я-то давно подозревал, что это не так. С чего бы это вдруг аминокислотам стимулировать выброс инсулина? С них и соматотропина вполне достаточно. И ведь верно! Относительно недавние исследования показали, что введение в организм чистых аминокислот не только не стимулирует, но даже тормозит выброс инсулина. Ведь соматотропин является «контринсулиновым гормоном». Введение в организм аминокислот ослабляет??????????? глюкозы на 62 мг/? (!). Вот вам и решение спора о том, что лучше делать на ночь для сжигания жира: ужинать или принимать чистые аминокислоты. Получается, лучше принимать аминокислоты.
Циклический аденозинионофосфат (ц-АМФ) является общепризнаным лидером среди внутриклеточных посредников возбуждающего и мобилизирующего медиаторного (гормонального) сигнала. И здесь все оказывается не так просто. В малых, физиологических концентрациях ц-АМФ усиливает утилизацию и снижение глюкозы, а в больших фармакологических концентрациях тормозит!. Кто бы мог подумать! Классические допинги типа фенамина и первитина способны при превышении минимальных дозировок вместо энергизирующего эффекта давать обратный, тормозной. Ведь именно ц-АМФ является посредником возбуждающего сигнала всех стимуляторов.
А ведь много раз спортивные врачи замечали, что высокие дозы стимуляторов способны вместо прироста результатов дать их падение. Только объявление все это не находило. Разглагольствовали о каком-то там запредельном торможении в нервных клетках, а разгадка оказалась проста: избыток стимулятора тормозит обмен глюкозы и все тут.
Повышение температуры тела, как оказалось, ускоряет утилизацию глюкозы тканями. Отсюда есть повод лишний раз подумать: зачем организму повышать температуру тела во время интенсивных физических упражнений.
В организме животных и человека хром служит незаменимым микроэлементом углеводного и липидного обмена и его потребление с пищей значительно усиливает утилизацию глюкозы.
Оказывается, АТФ, которая образуется в результате расщепления гликогена совсем не может быть заменена той АТФ, которая образуется в результате окисления глюкозы.
Помимо глюкозы все остальные сахара фосфорилируются и окисляются в цикле Кребса, только вот перед тем как окислиться в цикле Кребса они превращаются в глюкозу (глюконеогенез). Получается, что нет никаких биохимических обоснований для предпочтительного использования фруктозы или галактозы при диабете по сравнению с глюкозой.
В процессе пентазофосфатного цикла глюкоза не расходуется на продукцию энергии, но она служит исходным материалом для синтеза РНК и ДНК. Анаболические стероиды, равно как и инсулин, вводимый извне, резко активизируют работу пентозофосфатного цикла.
При голодании основным источником глюкозы служит аланин-аминокислота, которая из мышц направляется в печень, где специальные ферменты превращают аланин в глюкозу, столь необходимую для окисления жиров.
По мере адаптации организма к голоданию, развивается синтез глюкозы прямо из жирных кислот, а использование аминокислоты аланина, сопряженное с распадом мышечной ткани замедляется.
Считается, что синтез в организме незаменимых аминокислот невозможен, однако, как оказалось, для этого правила существует свое исключение. При аминокислотном дефиците 95% задержанной мозгом глюкозы трансформируются в аминокислоты, особенно незаменимые. Даже когда человек умирает от истощения, вес его головного мозга остается неизменным, т.е. при голодании мозг погибает в последнюю очередь.
90% жировой ткани образуется из глюкозы и лишь 10% - из липидов. Отсюда становится понятным чего стоят все эти «нейтрализаторы жиров в кишечнике» и т.д. Единственным реальным способом уменьшить количество жировой ткани является ограничение в рационе углеводов. Это хорошо известно тем, кто хоть раз испытал на себе все «прелести» предсоревновательной «сушки».
В принципе, не вызывает удивление тот факт, что чем выше физическая активность, тем меньше глюкозы включается в жировую ткань. При очень высокой физической нагрузке, эта величина может уменьшаться с 90 до 0,5%. Основное количество жира из глюкозы образуется в печени.
В организме человека в спокойном состоянии 50% всей глюкозы потребляется головным мозгом, 20% эритроцитами и почками, 20% мышцами и только какие-то жалкие 10% глюкозы остается на другие ткани. При интенсивной мышечной работе потребление мышцами глюкозы может возрасти до 50% от общего уровня за счет чего угодно, но только не за счет головного мозга.
Чем выше уровень тренированности, тем больше мышцы используют в качестве энергии жирные кислоты и тем меньше глюкозу. В организме высококвалифицированных спортсменов 60-70% энергетического обеспечения мышц достигается за счет использования жирных кислот и лишь 30-40% за счет использования глюкозы.
В период восстановления после физической работы только 15% молочной кислоты окисляется, а 75% вновь превращается в гликоген. 10% идут на другие реакции.
Аминокислота аланин, используемая для синтеза глюкозы в процессе гликонеогенеза из глюкозы, оказывается вновь может превратиться в аланин. Аминогруппы для этогодают аминокислоты с разветвленными боковыми цепями (валин, лейцин, изолейцин). Таким образом, аминокислоты с разветвленными боковыми цепями могут тормозить распад мышечной ткани до глюкозы во время интенсивной физической работы.
В количественном отношении физическая нагрузка увеличивает потребление глюкозы в работающих мышцах в 10 раз. Примерно в такой же степени инсулин повышает утилизацию глюкозы в покоящейся мышце. Однако сочетание инсулина и физической работы значительно превышает их суммарный эффект – в данном случае, утилизация глюкозы возрастает в 34(!) раза по сравнению с исходным уровнем. Проблема заключается лишь в том, чтобы обеспечить организм адекватным количеством глюкозы, иначе такой рост потребления без соответствующего обеспечения вызовет тяжелую гипогликемию – снижение содержания глюкозы в крови вплоть до смерти головного мозга от банального недостатка энергии[3]
Мы все знаем, что знаем, что главная роль гликогена печени состоит в поддержании постоянного физиологического уровня глюкозы в крови в условиях дефицита эпзогенных углеводов. Но мало кто знает, что если бы мышечный гликоген не обладал способностью к регенерации за счет глюкозы из печеночного гликогена, то весь запас мышечного гликогена при физической работе расходовался бы за 20 сек., при анаэробном окислении (белые мышцы) и за 3,5 мин в аэробных условиях (красные мышцы).
Синтез гликогена как в мышцах, так и в печени идет принципиально одинаковым путем, однако в печени гликоген может синтезироваться за счет глюконеогенеза (из жира и белка), а в мышцах нет.
Мозг, почки и эритроциты (частично и печень) утилизируют глюкозу вышеизложенным путем. Если учесть, что мозг утилизирует 50%, а почки и эритроциты – 20% всей глюкозы, то основной метаболический фонд глюкозы организма оказывается не зависит от инсулина. Такой процесс, независимости закрепился в процессе эволюции и сделал энергетический обмен более «гибким» и совершенным.
Фруктоза усиливает окисление жирных кислот, а глюкоза нет.
В мозговом слое почек, эритроцитах, семенниках снижение глюкозы идет только бескислородным путем. Так важные для организма органы защитили себя от возможного дефицита кислорода и «подстраховали» себя от гибели.
О глюкозе можно говорить бесконечно. Она навсегда останется для нас знакомой, и в то же время совсем незнакомой и далекой от полного понимания ее обмена.
Закончим на этом наш рассказ. Оставим немного на потом.

[1] 1973. З.А. Чаплыгина, Г.А. Баскович.
[2] Мг/? – это количество миллиграммов сахара в 100 г исследуемого вещества.
[3] Для головного мозга все едино: что недостаток кислорода, что недостаток глюкозы. Нет энергии, жизнь мозга прекращается.

"Кофеин"


 

Буланов Ю.Б., врач

Каждый из нас не один раз сталкивался с желанием перебороть утреннюю сонливость или вечернюю дремоту. Для того, чтобы взбодриться мы уже по привычке тянемся к стакану крепкого чая или чашечке кофе. Эффект достигается благодаря содержащемуся в этих напитках веществу - кофеину. Так что же это за вещество и как оно в действительности воздействует на наш организм?
Кофеин это алкалоид, который содержится в листьях чая (до 4%), семенах кофе (до2%), орехах кола (до 6%), бобах какао (до4%). Как видим, это вещество в природе распространено достаточно широко. Для медицинских целей, однако, кофеин получают синтетическим путем. С медицинской точки зрения кофеин - это классический психомоторный стимулятор. Он обладает свойством возбуждать нервную систему, уменьшать чувство утомления, увеличивать психическую активность, прогонять сон. Однако следует иметь в виду, особенно спортсменам, что физическую активность кофеин не повышает, а, наоборот, снижает.
Возбуждающее действие кофеина связано с его способностью блокировать рецепторы адреналина-тормозного медиатора центральной нервной системы. Кофеин снижает чувствительность нервных клеток к адреналину и таким образом, опосредованно, оказывает возбуждающее действие. Кофеин, однако, способен оказывать и прямое возбуждающее действие. Как и другие метилксантины, он блокирует фермент (фосфодиэстеразу), который ограничивает проведение (передачу) нервных импульсов к клетке. В результате, любой возбуждающий сигнал начинает действовать на нервные клетки сильнее. Если с кофеином переборщить, то может развиться выраженное психомоторное возбуждение (возбуждение психической и деятельной сферы).
На заре нашего века кофеин использовался в больших дозах для провокации симптомов заболевания у психических больных. Одновременно с центральной нервной системой кофеин возбуждает и вегетативную (иннерирующую внутренние органы). Возрастают частота и сила сердечных сокращений, повышается секреция желудочного сока, усиливается потоотделение, повышается температура тела и т.д. Артериальное давление не изменяется,т.к. кофеин хоть и стимулирует выброс сосудосуживающих факторов, одновременно стимулирует и выброс сосудорасширяющих. Кроме того, кофеин обладает мочегонным действием, что в свою очередь, не допускает подъема артериального давления. После приема кофеина (кофеиносодержащих напитков) улучшается самочувствие, появляется чувство бодрости, активизируются мышечные процессы и двигательная сфера. Комплексные исследования влияния кофеина на работоспособность показали, что после однократного его приема повышается концентрация внимания и мышечная сила, проявляемая одномоментно. Наряду с этим происходит снижение всех видов выносливости и увеличивается потребление кислорода, а это уже неблагоприятно сказывается на сердечной мышце. Сосуды сердца не всегда могут обеспечить адекватный кровоток и снабжении сердца кислородом. Ухудшается переносимость высоких температур, но улучшается переносимость холода. Это вызвано резким повышением интенсивности обмена веществ. Кофеин несколько снижает свертываемость крови, усиливает мочеотделение, активизирует процессы тканевого окисления. При этом усиливается распад гликогена. Его запасы в печени и в мышцах уменьшаются. Расширяются сосуды головного мозга, скелетных мышц, сердца, почек. Усиление распада гликогена приводит к повышению содержания в крови сахара. Кофеин так же обладает способностью разрушать подкожный нейтральный жир и увеличивать содержание в крови жирных кислот. Увеличение в крови сахара и жирных кислот - одна из причин появления ощущения бодрости и прилива энергии. Именно жирные кислоты, попав в кровь вызывают усиление теплоотдачи и повышение температуры тела.
Постоянный длительный прием кофеина, блокирующего тормозные аденозиновые рецепторы вызывают ответную реакцию организма - образование новых аденозиновых рецепторов и синтез большего, чем в норме количества аденозина. В результате такой приспособительной перестройки ЦНС возбуждающее действие кофеина снижается. Развивается привыкание, при котором требуются уже большие дозы кофеина для достижения того же стимулирующего эффекта. Внезапная отмена кофеина, принимавшегося длительное время, приводит к тому, что аденозин замещает все рецепторы. В ЦНС возникает сильное торможение. Появляются вялость, общая угнетенность, сонливость, нервная депрессия. Хронический прием кофеина истощает нервную систему. Развивается замедление мыслительных процессов, ослабление силы воли, появляется неуверенность в своих силах.
Употребление кофеина (кофеиносодержащих напитков) приводит к формированию физической и психической зависимости от этого вещества.
В силу всего вышеизложенного кофеин не может быть рекомендован для постоянного ежедневного применения в качестве средства, повышающего работоспособность и выносливость. С целью повышения интеллектуальной активности применять кофеин можно, но не чаще 1 раза в три дня и только в утренние часы. При таком способе приема полностью исключается возможность привыкания и истощения резервов нервной системы. Утренний прием кофеина позволяет избежать нарушения суточных биоритмов человеческого организма.
Кофеин помимо своей способности увеличивать выделение желудочного и кишечного соков резко усиливает перистальтику кишечника. Продвижение пищи по желудочно-кишечному тракту ускоряется. Пища не успевает полностью перевариться. Как результат развиваются гнилостные и бродильные процессы в кишечнике. Белковые компоненты пищи начинают гнить, а углеводные - бродить. По этой причине ни в коем случае нельзя запивать пищу чаем или кофе. Эти напитки следует пить отдельно, как минимум за час до основного приема пищи. Хотя даже в этом случае, продвижение пищи будет ускорено.
Употребление кофеиносодержащих напитков во всем мире растет очень быстрыми темпами. Люди очень быстро привыкают к бытовым стимуляторам типа кофеина, а отвыкают с большим трудом. Некоторые не могут отвыкнуть вовсе.
Самое распространенное кофеиносодержащее растение - это чай. Его культура является самой древней. Более пяти тысяч лет тому назад китайские пастухи заметили, что животные, обгладав какой - то кустарник, становились необычно резвыми и подвижными. Листья чая китайцы стали использовать в качестве лекарства от чрезмерной сонливости и вялости. Китайское “ча” означает молодой листочек. Китайские монахи готовили чай в качестве напитка, прогоняющего сон во время многодневных праздников и церемоний.
Постепенно чай стали возделывать как культуру. Из Китая он проник в Японию и Корею, а оттуда в Индонезию, Индию и на Цейлон. С Цейлона чай распространили уже по всему свету. Существуют два вида чая как растения: китайский и цейлонский. Все имеющиеся в настоящее время сорта являются их разновидностями.
В России чайный напиток употребляют с 1638 года, когда монгольский Алтын - хан прислал в подарок царю Михаилу Федоровичу 4 пуда чайного листа. Царский посол сначала не хотел принимать от хана в подарок какую-то траву взамен подаренных соболей и золотых украшений. Однако, при дворе напиток попробовали и сразу оценили. В 1679 году был заключен первый договор на поставку чая из Китая. С тех пор уровень потребления чая в России развивался только по восходящей линии. Благодаря своей способности мобилизовать сахар из гликогеновых депо и жирные кислоты из подкожно - жирового слоя чай устраняет чувство голода и обладает согревающим действием. Именно поэтому чай так популярен в местах лишения свободы, где недостаток питания зачастую сочетается с холодным климатом.
В зернах кофе содержание кофеина намного ниже, нежели в листьях чая. Более сильное стимулирующее действие напитка кофе объясняется просто большим количеством кофе, использующимся для приготовления напитка.
Какао - бобы содержат кофеина очень мало. Напиток какао и шоколад, которые изготовляют из какао - бобов стимулирующим действием почти не обладают, зато содержат большое количество жиров.
Довольно много кофеина в орехах кола. Всего существуют около 125 видов кустарников кола. Орехи кола помимо кофеина содержат еще и кокаин.
Постоянное употребление кофеиносодержащих напитков с целью стимуляции и повышения умственной работоспособности приводят к тем же побочным действиям, что и прием чистого кофеина. Постепенно развивается привыкание, которое требует приготовления все более и более крепких напитков. Прекращение употребления кофеиносодержащих напитков приводит к появлению вялости и сонливости, неспособности к продуктивному мышлению, что является следствием гиперактивности тормозных механизмов в ЦНС.
Истощение нервной системы при хроническом употреблении кофеиносодержащих напитков ускоряет развитие возростных заболеваний. Ряд серьезно настроенных ученых считает употребление чая и кофе одной из основных причин ослабления здоровья населения на всем земном шаре. Таких побочных действий как привыкание и истощение нервной системы можно избежать лишь в том случае, если употреблять их не чаще 1 раза в три дня и только в утренние часы. Достаточный перерыв между приемами чая или кофе позволяет нервным клеткам не только восстановить свои ресурсы, но даже достичь некоторой суперкомпенсации. Утренний же прием позволяет возбуждающему действию напитка впмсаться в естественный ритм активности организма.
Все кофеиносодержащие напитки выводят из организма витамин В1 (тиамин). Поэтому при их употреблении необходимо включать в пищевой рацион достаточное количество этого витамина. Лучше всего принимать витамин В1 в виде фосфотиамина, в котором к молекуле тиамина присоединен один фосфорный остаток.
Подводя итог выше сказанному, можно заключить, что употреблять кофеиносодержащие напитки можно, но только к месту и ко времени.


Кровяной допинг


 Мало кто знает, что вампиризм как таковой - это не выдумка сказочников. Вампиры действительно существовали вплоть до недавнего времени.

Известно, что кислород переносится кровью. Сама собой напрашивается мысль о том, что можно легко влиять на обеспечение кислородом тканей организма, увеличивая или уменьшая количество в организме циркулирующей крови, а следовательно, эритроцитов и гемоглобина, С глубокой древности у многих народов существовал обычай пить кровь своих врагов, чтобы стать сильным. Считалось, что вместе с кровью врага к победителю передаются и его силы. Такой обычай возник не на пустом месте. Давно уже было подмечено, что выпитая кровь способна несколько улучшить кислородное обеспечение организма за счет стимуляции собственного кроветворения. Улучшение кислородного обеспечения тканей - это прежде всего увеличение способности совершать длительную физическую работу без утомления. Это увеличение силы и выносливости, субъективное улучшение самочувствия.
Период в истории медицины, когда с лечебной целью употребляли кровь, получил. название <периода вампиризма>. Он длился вплоть до начала эпохи Возрождения. Когда кровь переваривается в желудочно-кишечном тракте, в организм попадает много веществ, стимулирующих кроветворение: двухвалентное железо, витамин В12, фрагменты гемоглобина, специфические стимуляторы эритропоэза. Известно, что не все белки полностью расщепляются в желудочно-кишечном тракте. Небольшая часть из них всегда всасывается в кровоток в неизменном виде и носит название информационных факторов пищи. Такие информационные факторы крови, всасываясь через желудочно-кишечный тракт в кровоток, дают ощутимый <толчок> собственному кроветворению. Мало кто знает, что вампиризм как таковой - это не выдумка сказочников. Вампиры действительно существовали вплоть до недавнего времени. Есть очень серьезное заболевание крови - порфирия, которое передается наследственным путем. Это заболевание характеризуется тяжелой анемией (малокровием) и связано оно с недостаточным образованием гемоглобина. Одна из форм порфирии отличается особенно тяжелым течением. Уровень гемоглобина падает настолько низко, что тяжелая кислородная недостаточность приводит к сухой гангрене - омертвлению мягких тканей. В первую очередь происходит омертвление тканей губ и кончиков пальцев. При этом становится виден оскал зубов и кончики костей на пальцах, напоминающие острые когти.
Несчастным больным невозможно было показаться на улице днем, не только из-за кошмарного внешнего вида, но и потому, что солнце губительно действовало на них, еще более усугубляя заболевание. Только под покровом ночи отваживались эти люди выйти из дома. А иногда они действительно совершали убийства, чтобы напиться крови, так как после этого им становилось немного легче. С появлением современных способов лечения и переливания крови вампиры навсегда ушли в прошлое, так же как и обычай пить кровь своих врагов. Однако кровь животных и продукты из нее люди употребляют в пищу регулярно. Примером тому может служить, например, <Детский гематоген> - препарат из высушенной крови крупного рогатого скота с добавлением сахара и молока. Выпускается также <Гемостимулин> - препарат, содержащий сухую пищевую кровь, лактат закисного железа и сульфат меди. Применяется он в качестве средства, стимулирующего кроветворение при малокровии. Издавна замечено, что при потере умеренного количества крови многим больным становится лучше. По мере накопления информации случайные наблюдения оформились в лечебные приемы, которые совершенствовались от поколения к поколению. Учение о лечебных кровопусканиях с детально разработанной техникой достигло расцвета в Средние века. В руководстве Авиценны она описана очень подробно. О широкой распространенности такого лечебного приема в прошлом говорит хотя бы такой факт: королю Людовику XIII за десять месяцев сделали кровопускание 47 (!) раз. Опытным путем было установлено, что кровопускание в количестве 250-300 мл не только не приносит организму никакого вреда, но, наоборот, помогает при очень многих заболеваниях. Уже современные исследования подтвердили этот факт. Выяснилось, что дозированное кроводускание в количестве 250--300 мл вызывает в организме легкую кислородную недостаточность. Это оказывает на организм тренирующее воздействие и приводит к развитию лечебного и общеукрепляющего действия.
Полезное действие кровопускания с развитием легкого кислородного голодания обуславливается несколькими причинами.
  • 1. Небольшая кровопотеря снижает артериальное, венозное, внутрикапиллярное давление, уменьшает нагрузку на сердечную мышцу, особенно на правый отдел, предотвращает опасность инфарктов миокарда и кровоизлияний в мозг.
  • 2. Умеренная кислородная недостаточность по типу тренировки вызывает целый комплекс полезных защитно-приспрсобительных реакций, характерных для легкого кислородного голодания: усиление, мозгового, сердечного, почечного кровообращения, улучшение микроциркуляции в результате снижения вязкости крови, более легкое присоединение кислорода к гемоглобину и более легкая отдача его в ткани и т.д.
  • 3. Потеря определенного количества форменных элементов крови в совокупности с легким кислородным голоданием приводит к значительной активизации клеток костного мозга и других кроветворных органов. В крови появляется большое количество веществ, активизирующих кроветворение. Уже на 6-й день после кровопускания количество эритроцитов и гемоглобина полностью восстанавливается. Самое интересное, что и после этого количество красных кровяных телец продолжается увеличиваться. К 10-му дню их уровень превышает исходный, после чего стабилизируется. Затем начинается медленное снижение. Правильно проведенное кровопускание стимулирует кроветворную систему, что в конечном итоге приводит к еще лучшему кровоснабжению органов и тканей организма.
  • В современной медицине кровопускания сами по себе используются не очень широко. Эта методика применяется при недостаточности правого желудочка сердца со значительным венозным застоем, что встречается при сильном воспалении легких, при острой недостаточности левого желудочка с отеком легких; при отравлении ядами, поражающими кроветворную систему. В полевых условиях, при отсутствии лекарственных препаратов, с помощью кровопускания можно предотвратить развитие инфаркта миокарда, кровоизлияние в мозг, гипертонический криз и т.д. Противопоказаниями к кровопусканию является пониженное артериальное давление, анемия, тромбообразования, выраженный атеросклероз и др. Употребление крови внутрь не всегда давал желаемый эффект, поэтому издавна делались попытки прямого переливания крови, особенно в Средние Века. Пробовали переливать кровь людям от других людей и даже от животных (молодых ягнят). Старикам с целью омоложения переливали кровь юношей, однако помогало мало. Чаще всего такие переливания крови заканчивались трагически.
    Лишь после того как были открыты группы крови, законы гемагглютинации, резус-фактор, разработки способов консервирования и хранения крови, переливание крови заняло достойное место в медицине. В основном кровь переливают тогда, когда -нужно возместить массивную кровопотерю как результат травмы или операции. Поскольку любая донорская кровь является для организма реципиента (того, кому переливают кровь) чужеродной, она может вызвать тяжелые осложнения. Современная трансфузиология - наука о переливании крови, идет сейчас по пути переливания отдельных ее компонентов, что резко уменьшает вероятность побочных действий и реакции <неприятия> чужой крови.
    Используются следующие компоненты крови, способные переносить кислород.
  • 1. Эритроцитарная масса*. Представляет из себя концентрат эритроцитов, отделенных от плазмы крови. Дает при переливании намного меньше осложнений, нежели цельная кровь.
  • 2. Эритроцитная взвесь. Это эритроцитарная масса, взвешенная в суспензии. Обладает еще меньшим числом побочных действий, чем эритроцитарная масса.
  • 3. Отмытые эритроциты. Это эритроцитарная масса, не просто отделенная от плазмы, но и отмытая от ее остатков физиологическим раствором. Качество отмытых эритроцитов еще выше, чем качество эритроцитарной взвеси.
  • 4. Замороженные эритроциты. Замороженные и вновь размороженные отмытые эритроциты вызывают еще меньше побочных реакций, чем все вышеназванные формы.
  • С того момента, как начали использоваться переливания крови, делались настойчивые попытки использовать ее с общеукрепляющей и биостимулирующей целью, а также для устранения гипоксии (недостатка кислорода в тканях). В конце концов, от этих попыток отказались вовсе. Слишком уж сильно отличается кровь двух разных людей, даже если она одной группы наблюдалось больше побочных действий чем пользы. И тогда было предложена методика, предусматривающая использование крови для вливания, которая была взята заблаговременно у самого донора. К настоящему времени эта методика отработана до совершенства. В основном ее используют в хирургии для подготовки к операции и операционного переливания крови. За б дней до операции у больного берут 250-300 мл крови, консервируют, а в день операции ему же и вливают, компенсируя операционные кровопотери.
    Кроме того, этот метод используют в спортивной практике - для коррекции сильной кислородной задолженности, возникающей при больших физических нагрузках. Достижения большого спорта подошли сейчас к тому рубежу, когда предельно используются возможности не только человеческого организма, но и фармакологии. Все чаще применяют способы биостимуляции, такие, как спортивная аутогемотрансфузия, получившая название <кровяного допинга>.
    За 10 дней до соревнований у физически подготовленного спортсмена берут до 400 мл крови и консервируют. Кровопускание вызывает не только легкую кислородную недостаточность, но и активизацию регенерации крови выше исходного уровня. Происходит также и общая активность всей симпатической нервной системы и активизация системы соединительной ткани, так называемой ретикулоэндоэпителиальной системы. Помимо увеличения содержания в крови гемоглобина и эритроцитов выше исходного уровня, происходит также повышение иммунитета, активизация надпочечников и т.д. При хранении крови около 10 дней в ней образуются биологически активные вещества с биостимулирующими свойствами. Вливание такой крови в день соревнований, особенно на самых последних изнуряющих этапах, резко повышает аэробную производительность и результативность спортивных выступлений. К тому же, вместе с переливанием крови возможно введение некоторых витаминов, энергизаторов, антигипоксантов, биологически активных веществ и т.д.
    Возможности этих методик очень велики. Помимо аэробных циклических видов спорта, аутогемотрансфузия, как эффективный способ повышения устойчивости организма к недостатку кислорода, может быть использована для покорения горных вершин, глубоководном нырянии, т.е. везде, где требуется устойчивость организма к недостатку кислорода.
    Разработаны интересные методики многократного переливания малых доз собственной крови с интервалом в 3-4 дня для оказания биостимулирующего и общеукрепляющего воздействия на тяжелых больных. Исследования в этой области продолжаются и дают все новые обнадеживающие результаты. Причем, использовать такую методику можно не только в медицине, но и в спорте. В настоящее время в спортивной практике используется эритропоэтин, стимулирующий кроветворение непосредственно в организме.
    Международный Олимпийский Комитет (МОК) своим решением причислил аутогемотрансфузию к допинговым средствам и запретил ее применение в спорте. По мнению многих авторитетных специалистов в области спортивной медицины это решение довольно спорно. Говоря о вреде аутогемотрансфузии, приводят доводы о том, что консерванты, используемые для хранения крови вредны. Однако эти же самые консерванты почему-то не являются вредными, когда в больницах широко используют чужую кровь для переливания. К тому же основной консервант крови -лимоннокислый натрий, обладающий скорее биостимулирующим, нежели токсическим действием. Тем не менее, поскольку решение МОК принято, автор оставляет право окончательного выбора за спортивными врачами и тренерами конкретных спортсменов. В настоящее время во всем мире ведутся интенсивные поиски искусственных кровезаменителей, способных переносить кислород из легких в ткани. Эти заменители спасут много человеческих жизней и позволят резко увеличить спортивные результаты в тех видах спорта, где нужна выносливость. В качестве таких заменителей крови пытаются использовать растворы поляризованного гемоглобина с большей молекулярной массой, бычий гемоглобин, очищенный от примесей, искусственные микротельца - липосомы, которые содержат гемоглобин, и даже целиком искусственные кислородопереносящие заменители крови - перфторуглероды. Пока все эти заменители очень далеки от совершенства и не справляются со своей задачей по причине малой кислородной емкости, либо высокой токсичности. Однако мы стоим на пороге создания таких кровезаменителей, которые не только будут равны человеческой крови по способности переносить кислород, но даже будут превосходить ее. Использование такой <искусственной крови> раздвинет перед человеком новые горизонты как биологических, так и спортивных достижений. Кто знает, может быть, пройдет совсем немного времени и каждый из нас в случае необходимости с целью укрепления здоровья сможет получить немного <голубой крови>.
    *Эритроцит - красная кровяная клетка, содержащая белок особого рода - гемоглобин, который и придает эритроцитам красный цвет. В легких гемоглобин присоединяет молекулу кислорода химической ковалентной связью, а в тканях он эту молекулу кислорода отдает, отсоединяет ее