вторник, 16 декабря 2014 г.

КОФЕИН КАК СПОРТИВНАЯ ДОБАВКА






Кофеин может влиять на результаты спортивных состязаний, уровень его содержания в крови был ограничен.

Кофеин – древнейший стимулятор. Его начали использовать ещё во времена палеолита – тогда из плодов кофейного дерева делали напиток со стимулирующими свойствами.

Что примечательно, кофеин совсем недавно (в 2004 году) был исключён из списка запрещённых к употреблению веществ по версии Международного Олимпийского Комитета. Поскольку кофеин может влиять на результаты спортивных состязаний, уровень его содержания в крови был ограничен.

Кофеин содержится в кофе, чае, в некоторых газированных напитках и даже в шоколадках.

В значительной степени воздействие кофеина на организм обуславливается индивидуальной чувствительностью к нему. Кроме того, хорошо тренированные люди получат больше плюсов от использования кофеина, чем малотренированные. Исследование, подтверждающее это, проводились на пловцах. Группа опытных спортсменов улучшила свои показатели после приёма 250 мг. кофеина, а группа обычных людей не показала сходного эффекта.

Что касается вопроса о том, действует ли кофеин одинаково на спортивные результаты «кофеманов» и тех, кто употребляет продукты с кофеином нечасто, то по этому поводу также проводились исследования (Van Soeren and Graham 1998). Воздержание от кофеина в течение 2-4 дней не усилило действие кофеина в контрольных испытаниях. Таким образом, был сделан вывод о том, что кофеин действует одинаково и на привычных пользователей и на тех, кто употребляет его время от времени.

Кофеин и выносливость

Чаще всего кофеин используется при тренировках на выносливость. Причина в том, что одна и та же нагрузка легче переносится с «кофеиновой» поддержкой, чем без неё. Ряд исследований показали улучшение выносливости при приёме кофеина в дозе от 3 до 9 мг. на килограмм веса. При интенсивности упражнений 90 % от максимальной ЧСС (частоты сердечных сокращений), время тренировки увеличилось на 10-20%.

Кофеин и высокоинтенсивные тренировки

Влияние кофеина на короткие высокоинтенсивные нагрузки до конца не выявлено. Некоторые из исследований показывают, что при нагрузках длительностью от 3 до 8 минут при интенсивности 100% от максимальной ЧСС, кофеин влияет путём стимулирования выделения адреналина из надпочечников, что улучшает мышечную сократимость. Когда это происходит, надо прилагать меньше усилий, чтобы выполнить привычную нагрузку.

Ещё один возможный механизм действия кофеина - его воздействие на нейромышечные проводящие пути, что способствует увеличению числа задействованных мышечных волокон.

Кофеин и похудение

Многие слышали о жиросжигающих свойствах кофеина. Стоит ли на самом деле возлагать на него такие надежды – давайте разберёмся. Пропаганда кофеина как жиросжигателя имеет под собой основания.

Дело в том, что кофеин обладает свойством стимулировать липолиз и мобилизацию жирных кислот. Исследования, проведённые на спортсменах показали, что работающие мышцы сжигают больше жира при условии употребления кофеина за час до тренировки. Кофеин стимулирует липолиз, увеличивает оксидизацию жиров. Но будет ли это значимым вкладом в общий процесс похудения – вопрос неоднозначный.

Дозировка

Кофеин – не та добавка, которой чем больше, тем лучше. Надо чтобы дозировка была не слишком маленькой – так эффект будет не выражен, но, в то же время и не чрезмерно высокой – после определённого предела улучшения физических показателей уже не происходит.

Нет одной дозировки для всех, потому что она высчитывается исходя из собственного веса. Возьмите за основу цифру в 3 мг. кофеина на килограмм веса. Легко посчитать, что для атлета весом 85 килограмм это будет 265 мг., а для того кто весит 50 килограмм – 150 мг. Если эта доза кажется недостаточной (что выясняется экспериментальным путём) – можно увеличить до 4-6 мг. на килограмм веса.

Пик содержания кофеина в крови наступает через 1 час после его приёма, поэтому рассчитывай время его употребления с небольшим запасом перед тренировкой, а не за 5 минут до её начала.

Углеводный обмен

  


Углеводы являются органическими, водорастворимыми веществами. Они состоят из углерода, водорода и кислорода, с формулой (CH2O)n, где ‘n’ может варьировать от 3 до 7. Углеводы содержатся главным образом в растительных продуктах (за исключением лактозы).

Исходя из химической структуры, углеводы делятся на три группы:

моносахариды
олигосахариды
полисахариды
Типы углеводов
Моносахариды

Моносахариды являются «основными единицами» углеводов. Число атомов углерода отличает эти основные единицы друг от друга. Суффикс «оза» используется для определения этих молекул в категорию сахаров:

триоза — моносахарид с 3 атомами углерода
тетроза — моносахарид с 4 атомами углерода
пентоза — моносахарид с 5 атомами углерода
гексоза — моносахарид с 6 атомами углерода
гептоза — моносахарид с 7 атомами углерода
В группу гексозы входят глюкоза, галактоза и фруктоза.

Глюкоза, также известный как сахар, содержащийся в крови, является тем сахаром, в который превращаются все другие углеводы в организме. Глюкоза может быть получена путем пищеварения или образована в результате глюконеогенеза.
Галактоза в свободном виде не встречается, а чаще в сочетании с глюкозой в молочном сахаре (лактозе).
Фруктоза, известная также как фруктовый сахар, является самым сладким из простых сахаров. Как и следует из названия, большое количество фруктозы содержится во фруктах. В то время как определенное количество фруктозы попадает непосредственно в кровь из пищеварительного тракта, в печени она рано или поздно превращается в глюкозу.
Олигосахариды

Олигосахариды состоят из 2–10 связанных между собой моносахаридов. Дисахариды, или двойные сахара, образуются из двух моносахаридов, связанных между собой.

Лактоза (глюкоза + галактоза) — единственный вид сахаров, который не встречается в растениях, а содержится в молоке.
Мальтоза (глюкоза + глюкоза) — встречается в пиве, крупах и прорастающих семенах.
Сахароза (глюкоза + фруктоза) — известный как столовый сахар, это наиболее распространенный дисахарид, поступающий в организм вместе с пищей. Он содержится в свекловичном сахаре, тростниковом сахаре, меде и кленовом сиропе.
Моносахариды и дисахариды образуют группу простых сахаров.

Полисахариды

Полисахариды образуются из 3 до 1000 моносахаридов, связанных между собой.

Типы полисахаридов:
Крахмал — растительная форма хранения углеводов. Крахмал существует в двух формах: амилозы или аминопектина. Амилоза представляет собой длинную неразветвленную цепь спирально закрученных молекул глюкозы, в то время как амилопектин — это сильно разветвленная группа связанных моносахаридов.
Пищевые волокна — это некрахмальный структурный полисахарид, который встречается в растениях и обычно трудно переваривается. Примерами пищевых волокон являются целлюлоза и пектин.
Гликоген — 100–30.000 соединенных вместе молекул глюкозы. Форма хранения глюкозы.
Переваривание и усвоение
Большинство углеводов мы потребляем в форме крахмала. Переваривание крахмала начинается во рту под действием амилазы слюны. Этот процесс переваривания с помощью амилазы продолжается в верхней части желудка, затем действие амилазы блокируется желудочной кислотой.

Процесс переваривания затем завершается в тонкой кишке с помощью амилазы поджелудочной железы. В результате расщепления крахмала амилазой образуются дисахарид мальтоза и короткие разветвленные цепочки глюкозы.

Эти молекулы, представленные теперь в форме мальтозы и коротких разветвленных цепочек глюкозы, далее будут расщеплены на отдельные молекулы глюкозы с помощью ферментов в клетках эпителия тонкой кишки. Те же процессы происходят при переваривании лактозы или сахарозы. В лактозе нарушена связь между глюкозой и галактозой, в результате чего образуются два отдельных моносахарида.

В сахарозе связь между глюкозой и фруктозой нарушена, в результате чего образуются два отдельных моносахарида. Отдельные моносахариды затем поступают через кишечный эпителий в кровь. При поглощении моносахаридов (таких, как декстроза, которая является глюкозой) переваривания не требуется, и всасываются они быстро.

Попав в кровь, эти углеводы, теперь в форме моносахаридов, используются по назначению. Поскольку фруктоза и галактоза в конечном итоге превращаются в глюкозу, далее я буду ссылаться на все переваренные углеводы, обозначая их как «глюкозу».

Усвоенная глюкоза
Усваиваясь, глюкоза является основным источником энергии (во время или сразу после приема пищи). Эта глюкоза катаболизируется клетками, чтобы получить энергию для образования АТФ. Глюкоза также может накапливаться в форме гликогена в мышцах и клетках печени. Но перед этим необходимо, чтобы глюкоза попала в клетки. Кроме того, глюкоза поступает в клетку различным образом в зависимости от типа клеток.

Чтобы усвоиться, глюкоза должна попасть в клетку. В этом ей помогают транспортеры (Glut-1, 2, 3, 4 и 5). В клетках, где глюкоза является основным источником энергии, например, в мозге, почках, печени и эритроцитах, поглощение глюкозы происходит свободно. Это означает, что глюкоза может поступить в эти клетки в любое время. В жировых клетках, сердце и скелетных мышцах, с другой стороны, поглощение глюкозы регулируется транспортером Glut-4. Их деятельность контролирует гормон инсулин. Реагируя на повышенный уровень глюкозы в крови, из бета-клеток поджелудочной железы высвобождается инсулин.

Инсулин связывается с рецептором на мембране клетки, которая, с помощью различных механизмов, приводит к транслокации рецепторов Glut-4 из внутриклеточных хранилищ к клеточной мембране, позволяя глюкозе попасть в клетку. Сокращение скелетных мышц также усиливает транслокацию транспортера Glut-4.

При сокращении мышц высвобождается кальций. Это увеличение концентрации кальция стимулирует транслокацию рецепторов GLUT-4, способствуя поглощению глюкозы при недостатке инсулина.

Хотя эффекты инсулина и физической нагрузки на транслокацию Glut-4 являются аддитивными, они независимы. Оказавшись в клетке, глюкоза может быть использована для удовлетворения энергопотребностей или синтезирована в гликоген и сохранена для дальнейшего использования. Глюкоза также может быть преобразована в жир и храниться в жировых клетках.

Попав в печень, глюкоза может быть использована для удовлетворения энергетических потребностей печени, сохранена в виде гликогена или преобразована в триглицериды для хранения в виде жира. Глюкоза является предшественником фосфата глицерина и жирных кислот. Печень преобразует избыток глюкозы в фосфат глицерина и жирные кислоты, которые затем соединяются для синтеза триглицеридов.

Некоторые из этих образованных триглицеридов хранятся в печени, но большинство из них вместе с белками переходят в липопротеины и секретируется в кровь.

Липопротеины, которые содержат намного больше жира, чем белка, называют липопротеинами очень низкой плотности (ЛОНП). Эти ЛОНП затем транспортируется через кровь в жировую ткань, где будут храниться как триглицериды (жиры).

Накопленная глюкоза
В организме глюкоза хранится в виде полисахарида гликогена. Гликоген состоит из сотен связанных друг с другом молекул глюкозы и хранится в мышечных клетках (около 300 граммов) и печени (около 100 граммов).

Накопление глюкозы в виде гликогена называется гликогенезом. Во время гликогенеза молекулы глюкозы поочередно добавляются в существующую молекулу гликогена.

Количество запасенного в организме гликогена определяется потреблением углеводов; у человека на низкоуглеводной диете гликогена будет меньше, чем у человека на диете с высоким содержанием углеводов.

Для использования накопленного гликогена он должен быть расщеплен на отдельные молекулы глюкозы в ходе процесса, который называемый гликогенолизом (лиз = расщепление).

Значение глюкозы
Для нормального функционирования глюкоза необходима нервной системе и головному мозгу, поскольку мозг использует его в качестве основного источника топлива. При недостаточном обеспечении глюкозой в качестве источника энергии мозг может также использовать кетоны (побочные продукты неполного распада жиров), но это скорее рассматривается как запасной вариант.

Скелетные мышцы и все другие клетки используют глюкозу для своих энергетических потребностей. Когда в организм с пищей не поступает необходимое количество глюкозы, в ход идет гликоген. После того, как запасы гликогена будут исчерпаны, организм вынужден найти способ, чтобы получить больше глюкозы, что достигается путем глюконеогенеза.

Глюконеогенезом является формирование новой глюкозы из аминокислот, глицерина, лактаты или пирувата (всех неглюкозных источников). Для того чтобы получить аминокислоты для глюконеогенеза, может быть катаболизирован мышечный белок. При обеспечении необходимым количеством углеводов глюкоза служит «сберегателем белка» и может предотвратить расщепление мышечного белка. Поэтому спортсменам так важно употреблять достаточное количество углеводов.

Хотя для углеводов не существует определенной нормы потребления, считается, что 40–50% потребляемых калорий должно поставляться углеводами. Для спортсменов это предполагаемая норма составляет 60%.

Как и по многим другим вопросам, люди продолжают спорить по поводу необходимого организму количества углеводов. Для каждого человека оно должно определяться с учетом разнообразных факторов, включая: тип тренировок, интенсивность, продолжительность и частоту, общее количество потребляемых калорий, цели тренировок и желаемый результат с учетом конституции тела.

Что такое АТФ?
Аденозинтрифосфат, молекула АТФ содержит макроэргические фосфатные связи и используется для хранения и высвобождения необходимой организму энергии.
Краткие выводы и заключение
Углеводы = (CH2O)n, где n варьирует от 3 до 7.
Моносахариды являются «основными единицами» углеводов
Олигосахариды состоят из 2–10 связанных между собой моносахаридов
Дисахариды, или двойные сахара, образуются из двух моносахаридов, связанных между собой, к дисахаридам относится сахароза, лакроза и галактоза.
Полисахариды образуются из 3 до 1000 моносахаридов, связанных между собой; к ним относятся крахмал, пищевые волокна и гликоген.
В результате расщепления крахмала образуется мальтоза и короткие разветвленные цепочки глюкозы.
Чтобы усвоиться, глюкоза должна попасть в клетку. Это осуществляется транспортерами глюкозы.
Гормон инсулин регулирует работу транспортеров Glut-4.
Глюкоза может быть использована для образования АТФ, сохранена в форме гликогена или жира.
Рекомендуемая норма потребления углеводов — 40–60% от общего числа калорий.

Why Antioxidants Don’t Belong in Your Workout

 http://well.blogs.nytimes.com/2014/11/26/why-antioxidants-dont-belong-in-your-workout/



Photo
CreditAriel Zambelich for The New York Times 


Antioxidant vitamins are enormously popular with people who exercise. The supplements are thought to alleviate muscle damage and amplify the effects of exercise. But recent studies have raised questions about whether antioxidants might be counterproductive for runners and other endurance athletes. And now a cautionary new experiment adds to those doubts by finding that antioxidants may also reduce the benefits of weight training. 
It is easy to see why people might think that antioxidants like vitamins C and E could be helpful to anyone who works out regularly. Both aerobic exercise and strength training lead to the production of free radicals, molecules that in concentrated amounts can cause tissue damage. Antioxidants sop up and neutralize free radicals. So, the thinking goes, taking antioxidant should lessen some of the damage and soreness after exercise and allow people to train harder.

But recent experiments with endurance athletes have found that consuming large doses of vitamins C and E actually results in a slightly smaller training response. The athletes taking these vitamins had lower levels of certain enzymes that spur an increase in mitochondria in muscle cells. Mitochondria help to create cellular energy, and having more of them allows people to exercise longer and harder. By blunting the creation of mitochondria, the vitamins had lessened the expected increase in fitness. 
But those studies looked only at endurance sports such as running and cycling, not weight training, which involves different biochemical processes within muscles.
So for the new study, which was published online this month in The Journal of Physiology, scientists at the Norwegian School of Sports Sciences in Oslo and other institutions, some of whom previously had studied aerobic exercise and antioxidants, set out to repeat those experiments in a weight room. 
They began by recruiting 32 men and women who had at least some experience with weight training. They measured the volunteers’ muscular size and strength. 
Then they randomly divided them into two groups. Half were asked to start taking two antioxidant vitamin pills each day, one before and one after exercising. The total daily dosage amounted to 1,000 milligrams of Vitamin C and 235 milligrams of Vitamin E, which “is high but not higher than athletes commonly use,” said Goran Paulsen, a professor at the Norwegian School of Sports Sciences who led the study. 
The other group did not take any supplements. 
All of the volunteers then began the same resistance-training regimen, consisting of four fairly rigorous training sessions each week. As the exercises grew easy, weights were increased, with the aim of pumping up the size and strength of the volunteers’ muscles.
The program lasted 10 weeks. But midway through that time, the researchers took small samples of muscle tissue from each volunteer in order to determine what, precisely, was going on deep within each volunteer’s cells.
Then the men and women finished the remainder of the program, at the end of which the researchers again measured their strength and muscle size. 
In general, people’s muscles had increased in size to the same extent, proportionally. The group that had taken the vitamins now had larger muscles. So did the group that had not. 
But there were subtle but significant differences in their strength gains. Over all, the volunteers who had taken the antioxidants had not added as much strength as the control group. Their muscles were punier, although they had grown in size. 
The differences continued beneath the skin, where, as the muscle biopsies showed, the volunteers taking the vitamins had reduced levels of substances known to initiate protein synthesis. Protein synthesis is necessary to repair and strengthen muscles after weight training. So the volunteers taking the vitamins were getting less overall response from their muscles, even though they were following the same exercise program. 
Exactly how antioxidant pills change muscles’ reactions to weight training is still unknown. But Dr. Goran and his colleagues speculate that, by reducing the number of free radicals after exercise, the vitamins short-circuit vital physiological processes. In this scenario, free radicals are not harmful molecules but essential messengers that inform cells to start pumping out proteins and other substances needed to improve strength and fitness. Without enough free radicals, you get less overall response to exercise. 
Dr. Goran believes that the same process occurs after endurance exercise, although the specific biochemical signals and pathways are different. 
The upshot is that whether you lift weights or jog, Dr. Goran would advise “against the use of high-dosages of concentrated antioxidant supplements.” 
Of course, his advice does not apply to anyone with an actual deficiency of one of the antioxidants, he said, although that condition is rare. He also doesn’t suggest that we avoid orange juice or other natural sources of vitamins C and E while training. “But large volumes,” he said, “would be unnecessary.”