Буланов Ю.Б., врач
Что мы знаем о глюкозе? Казалось бы уже все, что можно было узнать давно уже узнано и используется. Однако жизнь показывает что это не так. Мы постоянно узнаем что-то новое, неизвестное ранее, что-то уточняем и корректируем. Ведь наука не стоит на месте.
Все мы знаем о том, что глюкоза – основной энергетический субстрат организма. Хоть и содержит она калорий вдвое меньше чем жиры, но окисляется намного быстрее и легче, чем любые другие вещества, способные поставлять организму энергию.
Все углеводы всасываются в кишечнике. Существует так называемый, «гликемический индекс», который позволяет нам сравнить скорость всасывания отдельных углеводов. Если принять скорость всасывания глюкозы за 100, то, соответственно, величина для галактозы будет 110, для фруктозы 43, маннозы – 19, пентозы 9-15. Все моносахариды попадая в клетки слизистой оболочки кишечника фосфорируются, т.е. образуют фосфорные сложные эфиры. Только в таком виде углеводы могут включиться в энергетический обмен. Фосфориирование происходит при участии специальных ферментов, которые активизируются инсулином. Все бы хорошо, но вот беда: во время тяжелой физической работы, во время прохождения соревновательной дистанции или длительной круговой тренировки на выносливость, выброс в кровь инсулина постоянно снижается, иначе он будет тормозить распад гликогена, жировых и белковых запасов до глюкозы. Однако глюкоза, выбрасываемая в кровь плохо утилизируется мышцами из-за недостатка инсулина, ведь она не может фосфорилироваться. Возникает замкнутый порочный круг, каких немало в организме: чтобы насытить кровь работающего организма глюкозой необходимо избавиться от избытка инсулина, а чтобы использовать полученную таким образом глюкозу организму не хватает инсулина, чтобы ее фосфорилировать. Получается ни то, ни се. Организм секретирует инсулин, но чуть-чуть, чтобы хватило и вашим и нашим, чтобы распадался гликоген и в то же время чтобы глюкоза хоть как-то усваивалась работающими мышцами. Где же выход? Он оказался до чрезвычайности прост: необходимо синтезировать фосфорилированные углеводы, углеводы с уже присоединенными фосфорными остатками. Тогда и волки будут сыты и овцы целы. Организм может хоть совсем прекратить выработку инсулина. Фосфорилированные углеводы моментально всасываются в кишечнике, никто не берется даже подсчитать их гликемический индекс и моментально включаются в обмен. Фосфорилированные углеводы это новая веха в спортивном питании на дистанции и во время тренировок. Их прием позволяет проводить тренировки с невиданной доселе эффективностью и организовать питание на дистанции, например, стайеров так, что все спортивные достижения резко улучшатся. Фосфорилированные углеводы – это отличное средство для карбогидратной загрузки, для посттренировочной загрузки углеводами. Их применение позволяет значительно повысить устойчивость организма к гипоксии (недостатку кислорода в тканях) и значительно ускорить посттренировочное восстановление. Интересно то, что будучи принятыми внутрь, фосфорилированные углеводы резко увеличивают гликемический индекс обычных, нефосфорилированных углеводов. Это происходит потому, что сахара всасываются в кишечнике по концентрационному градиенту. Фосфорилированные углеводы быстро включаются в энергетический обмен и в клетках кишечника концентрация свободных моносахаридов становится намного меньше, чем в просвете кишечника. Отсюда и ускорение всасывания.
В развитых странах такие препараты выпускаются уже много лет. Так, например, препарат «фруктэргил» представляет из себя не что иное, как фруктозо-1,6-дифафат-фосфорилированный углевод, которые моментально включается в обмен с выходом большого количества энергии. Выпускается глюкозо-1-фосфат, глюкозо-6-фосфат и т.д.
Все эти препараты выпускаются под разными коммерческими названиями и очень широко используются как в спорте, так и в повседневной жизни для скорейшего снятия утомления. Большинство из этих препаратов синтезировано и используется для лечения и профилактики утомления во Франции и Италии. Постепенно создается новая индустрия, индустрия лекарств для здорового человека, где грань между лекарством и пищей незаметна и порой бывает трудно отличить одно от другого.
Советскими[1] учеными Чаплыгиной и Басковичем был создан оригинальный отечественный препарат «гексозофосфат». Гексозофосфат состоял из смеси глюкозо-1-фосфата, глюкозо-6-фосфата, фруктозо-6-фосфата и фруктозо 1,6 дифосфата. Препарат был с большим успехом апробирован, нов серийное производство почему-то не пошел. Почему так случилось, сейчас остается только гадать.
Все мы знаем как важен для продолжительной мышечной работы постоянный стабильный уровень сахара в крови. Нее все однако, знают, что мышцы использовать в своей работе сахар не могут (!). Они захватывают из кровотока глюкозу с одной единственной целью, пополнить запасы гликогена. Мышцы непосредственно расщепляют гликоген для совершения физической работы и вновь синтезируют его из глюкозы и частично из пировиноградной и молочной кислоты. Чем выше спортивная квалификация атлета, тем выше его способность синтезировать гликоген из молочной кислоты (в которую, в конечном итоге превращается пировиноградная кислота).
Сахар (глюкоза) компонент внутренний среды как позвоночных, так и беспозвоночных. Наиболее постоянен уровень сахара в крови натощак у человека и высших позвоночных животных. Напомним, что кровь человека содержит 70-120 мг/?[2] сахара. Птицы отличаются очень высоким уровнем сахара крови (150-200 мг/?), что обусловлено их очень высоким метаболизмом. Но самым высоким содержанием сахара в организме отличаются пчелы (до 3000 (!) мг/?). Не зря они приносят нам мед. такого содержания в организме сахара (глюкоза+фруктоза) нет более ни у одного живого существа.
В последние годы был обнаружен очень интересный феномен. Оказалось, что включение глюкозы во внутриклеточный обмен прямо пропорционально скорости ее проникновения внутрь клетки. Все факторы, ускоряющие транспорт глюкозы (фосфорилирование и др.) будут приводить к ускорению углеводного метаболизма.
Интенсивная аэробная нагрузка, приводящая к развитию выраженного энергетического дефицита в мозге, мышцах, сердце, печени и др. работающих органах может в 2-2,5 раза ускорить как скорость проникновения глюкозы внутрь клетки, так и ее включение в обмен.
С жировой тканью ситуация совершенно иная. В условиях больших аэробных нагрузок проникновение глюкозы в жировые клетки начисто тормозится. Если учесть, что 90% жира синтезируется из углеводов (глюкозы), можно понять, почему все бегуны на длинные дистанции такие тощие-претощие.
Пробовали выяснить, что больше влияет на включение глюкозы в метаболизм: скорость транспорта или фосфорилирование? Для этого ткани насыщались большими концентрациями глюкозы (400-500 мг/?) и в конце концов торжественно объявили, что лидирующим фактором является все-таки фосфорилирование. При дальнейшем нарастании концентрации глюкозы только от фосфорилирования зависила скорость ее включения в обмен. Вот мы опять вернулись к фосфорилированным углеводам. И видит око, да зуб неймет.
В каких органах самая высокая скорость транспорта глюкозы? В эритроцитах и в печени она на порядок (!) выше, чем в других тканях и здесь эта скорость определяется фосфорилированием.
Все мы знаем, что животные жиры вредны, а растительные полезны. Хотя злые языки давно уже поговаривают о том, что свободнорадикальное отношение??????????????? растительными жирами намного сильнее, чем животными (акад. Дильман В.М и др.). Но кто бы мог подумать, что растительные жиры принимают самое активное участие в переносе углеводов через клеточные мембраны. Что зависит от скорости такого переноса, мы уже знаем. Оказывается, самое обычное увеличение в рационе дозы растительных масел значительно активизирует инсулин и изменяет жидкостные свойства клеточных мембран, делая их более проницательными для глюкозы (Mukherjec L.P. etal 1980 г.).
Во всех каталогах, расхваливающих аминокислотные смеси написано, что прием аминокислот стимулирует выброс в кровь соматропина и инсулина, которые являются естественными «анаболиками» организма. Инсулин при этом по логике вещей должен стимулировать утилизацию глюкозы тканями. Я-то давно подозревал, что это не так. С чего бы это вдруг аминокислотам стимулировать выброс инсулина? С них и соматотропина вполне достаточно. И ведь верно! Относительно недавние исследования показали, что введение в организм чистых аминокислот не только не стимулирует, но даже тормозит выброс инсулина. Ведь соматотропин является «контринсулиновым гормоном». Введение в организм аминокислот ослабляет??????????? глюкозы на 62 мг/? (!). Вот вам и решение спора о том, что лучше делать на ночь для сжигания жира: ужинать или принимать чистые аминокислоты. Получается, лучше принимать аминокислоты.
Циклический аденозинионофосфат (ц-АМФ) является общепризнаным лидером среди внутриклеточных посредников возбуждающего и мобилизирующего медиаторного (гормонального) сигнала. И здесь все оказывается не так просто. В малых, физиологических концентрациях ц-АМФ усиливает утилизацию и снижение глюкозы, а в больших фармакологических концентрациях тормозит!. Кто бы мог подумать! Классические допинги типа фенамина и первитина способны при превышении минимальных дозировок вместо энергизирующего эффекта давать обратный, тормозной. Ведь именно ц-АМФ является посредником возбуждающего сигнала всех стимуляторов.
А ведь много раз спортивные врачи замечали, что высокие дозы стимуляторов способны вместо прироста результатов дать их падение. Только объявление все это не находило. Разглагольствовали о каком-то там запредельном торможении в нервных клетках, а разгадка оказалась проста: избыток стимулятора тормозит обмен глюкозы и все тут.
Повышение температуры тела, как оказалось, ускоряет утилизацию глюкозы тканями. Отсюда есть повод лишний раз подумать: зачем организму повышать температуру тела во время интенсивных физических упражнений.
В организме животных и человека хром служит незаменимым микроэлементом углеводного и липидного обмена и его потребление с пищей значительно усиливает утилизацию глюкозы.
Оказывается, АТФ, которая образуется в результате расщепления гликогена совсем не может быть заменена той АТФ, которая образуется в результате окисления глюкозы.
Помимо глюкозы все остальные сахара фосфорилируются и окисляются в цикле Кребса, только вот перед тем как окислиться в цикле Кребса они превращаются в глюкозу (глюконеогенез). Получается, что нет никаких биохимических обоснований для предпочтительного использования фруктозы или галактозы при диабете по сравнению с глюкозой.
В процессе пентазофосфатного цикла глюкоза не расходуется на продукцию энергии, но она служит исходным материалом для синтеза РНК и ДНК. Анаболические стероиды, равно как и инсулин, вводимый извне, резко активизируют работу пентозофосфатного цикла.
При голодании основным источником глюкозы служит аланин-аминокислота, которая из мышц направляется в печень, где специальные ферменты превращают аланин в глюкозу, столь необходимую для окисления жиров.
По мере адаптации организма к голоданию, развивается синтез глюкозы прямо из жирных кислот, а использование аминокислоты аланина, сопряженное с распадом мышечной ткани замедляется.
Считается, что синтез в организме незаменимых аминокислот невозможен, однако, как оказалось, для этого правила существует свое исключение. При аминокислотном дефиците 95% задержанной мозгом глюкозы трансформируются в аминокислоты, особенно незаменимые. Даже когда человек умирает от истощения, вес его головного мозга остается неизменным, т.е. при голодании мозг погибает в последнюю очередь.
90% жировой ткани образуется из глюкозы и лишь 10% - из липидов. Отсюда становится понятным чего стоят все эти «нейтрализаторы жиров в кишечнике» и т.д. Единственным реальным способом уменьшить количество жировой ткани является ограничение в рационе углеводов. Это хорошо известно тем, кто хоть раз испытал на себе все «прелести» предсоревновательной «сушки».
В принципе, не вызывает удивление тот факт, что чем выше физическая активность, тем меньше глюкозы включается в жировую ткань. При очень высокой физической нагрузке, эта величина может уменьшаться с 90 до 0,5%. Основное количество жира из глюкозы образуется в печени.
В организме человека в спокойном состоянии 50% всей глюкозы потребляется головным мозгом, 20% эритроцитами и почками, 20% мышцами и только какие-то жалкие 10% глюкозы остается на другие ткани. При интенсивной мышечной работе потребление мышцами глюкозы может возрасти до 50% от общего уровня за счет чего угодно, но только не за счет головного мозга.
Чем выше уровень тренированности, тем больше мышцы используют в качестве энергии жирные кислоты и тем меньше глюкозу. В организме высококвалифицированных спортсменов 60-70% энергетического обеспечения мышц достигается за счет использования жирных кислот и лишь 30-40% за счет использования глюкозы.
В период восстановления после физической работы только 15% молочной кислоты окисляется, а 75% вновь превращается в гликоген. 10% идут на другие реакции.
Аминокислота аланин, используемая для синтеза глюкозы в процессе гликонеогенеза из глюкозы, оказывается вновь может превратиться в аланин. Аминогруппы для этогодают аминокислоты с разветвленными боковыми цепями (валин, лейцин, изолейцин). Таким образом, аминокислоты с разветвленными боковыми цепями могут тормозить распад мышечной ткани до глюкозы во время интенсивной физической работы.
В количественном отношении физическая нагрузка увеличивает потребление глюкозы в работающих мышцах в 10 раз. Примерно в такой же степени инсулин повышает утилизацию глюкозы в покоящейся мышце. Однако сочетание инсулина и физической работы значительно превышает их суммарный эффект – в данном случае, утилизация глюкозы возрастает в 34(!) раза по сравнению с исходным уровнем. Проблема заключается лишь в том, чтобы обеспечить организм адекватным количеством глюкозы, иначе такой рост потребления без соответствующего обеспечения вызовет тяжелую гипогликемию – снижение содержания глюкозы в крови вплоть до смерти головного мозга от банального недостатка энергии[3].
Мы все знаем, что знаем, что главная роль гликогена печени состоит в поддержании постоянного физиологического уровня глюкозы в крови в условиях дефицита эпзогенных углеводов. Но мало кто знает, что если бы мышечный гликоген не обладал способностью к регенерации за счет глюкозы из печеночного гликогена, то весь запас мышечного гликогена при физической работе расходовался бы за 20 сек., при анаэробном окислении (белые мышцы) и за 3,5 мин в аэробных условиях (красные мышцы).
Синтез гликогена как в мышцах, так и в печени идет принципиально одинаковым путем, однако в печени гликоген может синтезироваться за счет глюконеогенеза (из жира и белка), а в мышцах нет.
Мозг, почки и эритроциты (частично и печень) утилизируют глюкозу вышеизложенным путем. Если учесть, что мозг утилизирует 50%, а почки и эритроциты – 20% всей глюкозы, то основной метаболический фонд глюкозы организма оказывается не зависит от инсулина. Такой процесс, независимости закрепился в процессе эволюции и сделал энергетический обмен более «гибким» и совершенным.
Фруктоза усиливает окисление жирных кислот, а глюкоза нет.
В мозговом слое почек, эритроцитах, семенниках снижение глюкозы идет только бескислородным путем. Так важные для организма органы защитили себя от возможного дефицита кислорода и «подстраховали» себя от гибели.
О глюкозе можно говорить бесконечно. Она навсегда останется для нас знакомой, и в то же время совсем незнакомой и далекой от полного понимания ее обмена.
Закончим на этом наш рассказ. Оставим немного на потом.
Комментариев нет:
Отправить комментарий