воскресенье, 9 декабря 2018 г.

Генный допинг. Часть 2

 Другим, запрещенным в 2009 г., видом генного допинга, является AICA ribonucleotide или AICAR (aminoimidazole carboxamide ribonucleotide) — интермедиат (промежуточный продукт) генерирования инозинмонофосфата, выступающего в качестве агониста АМР-активированной проте-инкиназы (АМРК) (Corton al., 1995). Субстанция AICAR стимулирует поглощение в скелетных мышцах глюкозы и увеличивает экспрессию р38-митоген-активированной протеинкиназы типов а и β (Lemieux et al., 2003), а также предотвращает процесс апоптоза путем торможения образования свободных радикалов, прежде всего химически активного атомарного кислорода, внутри клетки (Kim et al., 2008). Следует отметить, что достаточно давно биохимиками-теоретиками на молекулярном уровне установлена связь между действием АМРК и функционированием Na+-K+-АТФ-азы (натрий-калиевый насос), гидролизующей с образованием энергии 25 % всех запасов АТФ в клетке. Потому активность АМРК является сверхчувствительным сенсором энергозависимых процессов и отображает процессы выработки энергии и, в частности, нижней границы образования АТФ, инактивируется увеличением нижней границы соотношения АМФ/АТФ (Lingrel, Kuntzweiler, 1994).
По химической структуре AICAR является комплексом соединения на основе имидазольного кольца с рибонуклеотидом, а именно 5-амино-имидазол-4-карбоксиамид-1 -β-D-рибофуранозидом (рис. 3.19).
Химическая структура AICAR
В 2008 г. исследователи Института Солка под руководством Дж. Кима обнаружили что AICAR, в зависимости от интенсивности нагрузки, при использовании его в течение четырех недель у экспериментальных мышей значительно повышает их работоспособность на тредмиле в упражнениях на выносливость путем, по-видимому, преобразования быстросокращающихся мышечных волокон в более энергоэффективные, липидогенерирующие, медленносокращающиеся мышечные волокна. Было показано, что этот процесс опосредован торможением пальмитат-индуцированной клеточной смерти (апоптоза) эндотелиальных клеток путем угнетения процессов перекисного окисления липидов в них (Kim et al., 2008).
В эксперименте на крысиных и человеческих клетках установлено, что АМРК регулирует стимулированную при гиперкапнии накоплением С02 альвеолярную эпителиальную дисфункцию и соответственно улучшает легочную вентиляцию (Vadusz et al., 2008). Как показывают недавние исследования, в частности, проведенные на изолированных клетках миокарда и мышечных клетках, АМРК также стимулирует поглощение глюкозы этими структурами (Sugalen et al., 2007). Отсюда следует, что эффективные агонисты АМР-активированной протеинкиназы могут быть точкой приложения для стимуляции механизмов энергообеспечения. Как активатор АМР-активированной протеинкиназы, AICAR в эксперименте на животных увеличивает содержание свободных жирных кислот в обоих (быстрых и медленных) типах мышечных волокон через изменение уровней адипонектина и лептина (белков, участвующих в липидном обмене) и повышение содержания глюкозы в белых мышечных волокнах (рис. 3.20).
Влияние AICAR на активность АМРК в белых (а) и красных (б) мышечных волокнах (исследования проведены в основной и контрольной группах по 6 животных в каждой) (Sugalen et al., 2007) *Р < 0,01 по сравнению с контролем)
Кроме того, AICAR способствует увеличению содержания глюкозы, инсулина, свободных жирных кислот, а также снижению лактата в плазме крови экспериментальных животных (рис. 3.21). Последний факт может оказаться очень важным для понимания тонких механизмов энергообеспечения физической нагрузки и механизмов восстановительных процессов.
Влияние AICAR на содержание в плазме глюкозы, инсулина, свободных жирных кислот и лактата (исследования проведены в основной и контрольной группах по 14 животных в каждой, которым AICAR вводился подкожно) (Sugalen et al., 2007) *Р < 0,05, **Р < 0,01 по сравнению с контролем)
Следует отметить, что такие исследования велись одновременно в нескольких научных центрах. Так, еще в 2005 г. было показано, что 5-амино-имидазол-4-карбоксиамид-1 -β- D-рибо-фуранозид и фенформин активируют АМР-активированную протеинкиназу путем угнетения транспорта натрия в клетках легких, что является одним из путей поддержания баланса жидкости в тканях (Woollhead et al., 2005). AICAR способен также стимулировать фосфорилирование АМРК и активировать гликолиз путем увеличения поглощения глюкозы в клетках. В условиях низкого содержания глюкозы увеличение соотношения АМФ/АТФ стимулирует оба процесса в астроцитарных клетках мозга. Активация (через сложный биохимический механизм синтеза модулятора TSC2 и mTOR) этих сигнальных путей помогает сэкономить количество энергии, необходимой для синтеза белка и гликолиза, и, тем самым, предотвратить апоптоз нервных клеток (Mukheijee, 2008). Приведенные данные убедительно доказывают, что активация АМРК с помощью агонистов сопровождается выраженными многочисленными эффектами со стороны различных органов и систем, что и может объяснять многостороннее влияние модуляторов активности этого фермента на функциональное состояние организма.
Практически одновременно с исследованиями физиологической и биохимической активности AICAR, под руководством В. Наркара и Р. Эванса, были проведены эксперименты, показавшие, что у нетренированных мышей AICAR, особенно в сочетании с GW 1516, активирует около 40 % генов, которые включаются при реальных интенсивных физических нагрузках. Исследователи сделали вывод, что при совместном применении двух агонистов, возможно, удастся достичь эффекта тренировки без фактических физических нагрузок (Narkar et al., 2008). Результаты этих исследований были опубликованы как раз накануне Игр XXIX Олимпиады и косвенно указывали на возможность использования данных веществ в качестве допинга для стимуляции работоспособности и выносливости спортсменов. В связи с этим руководители исследования срочно разработали и передали в распоряжение МОК и WADA тесты для обнаружения AICAR в моче спортсменов. Такие действия исследователей никак не могут быть объяснены только желанием создать запрещенную в спорте субстанцию; скорее было обнаружено побочное действие веществ, тестируемых для создания новых терапевтических препаратов, которое выразилось в триггерных изменениях в организме, свойственных физической нагрузке, и улучшающих процессы энергообеспечения, особенно за счет липидов, а также повышения чувствительности к инсулину (Iglesias et al., 2004). В настоящее время совместно с Медицинской комиссией МОК и WAD А Р. Эванс и его сотрудники разрабатывают систему сертификации тестов, способных уловить присутствие метаболитов новых генных допингов — AICAR и GW 1516 — и ретроспективно тестировать спортсменов, участвовавших в Олимпийских играх в 2008 г., поскольку на момент проведения Игр методы допинг-контроля на присутствие обоих субстанций еще не были сертифицированы.
Когда в 2004 г. Р. Эванс и его коллеги провели генетическое модифицирование молодых мышей с изменением состава и структуры их мышц, то получили животных, практически вдвое более устойчивых к нагрузкам, чем обычные мыши. Эти "мыши-марафонцы" не набирали избыточную массу тела и не увеличивали объем мышц, имели низкий уровень сахара и высокий — свободных жирных кислот в крови, что сделало их, по выражению исследователя, "замечательными бегунами". Исследователи доказали, что можно перепрограммировать работу мышц, используя методы генетической инженерии у молодых животных. В интервью "Нью-Йорк Тайме" Р. Эванс подчеркнул, что неизвестно, можно ли делать с помощью лекарств такое генетическое перепрограммирование у взрослых особей, когда весь мышечный аппарат уже сформирован, и за короткое время необходимо изменить свойства большой массы скелетных мышц.
Исследователи считают, что преимущества, полученные при использовании AICAR и GW 1516, обусловлены взаимодействием между клеточными АМРК и PPAR-5 сигнальными путями. Данные генетического анализа подтверждают эту гипотезу относительно того, что AICAR и GW 1516 по отдельности активируют только незначительную подгруппу генов, экспрессируемых при физической нагрузке. При этом по отдельности агонисты и АМР-активированной протеинкиназы (AICAR), и пролиферирующего пероксисомного дельта-, а по некоторым данным, и бета-рецептора PPAR (GW 1516), могут имитировать некоторые показательные эффекты, присущие физической нагрузке. В то же время активация обоих путей (комбинация AICAR и GW 1516 с физической нагрузкой) приводит к экспрессии значительно большего числа генов, ремоделируюших большое количество метаболических путей в организме, в том числе, и метаболизм мышечной ткани (Lemieux et al., 2003).
В фундаментальной статье, написанной группой известных специалистов (Knopp et al., 1997), авторы обсуждали дискуссионные вопросы, связанные с неоднозначностью трактовки МОК и спортивными врачами понятия "генный допинг", а также пытались сформулировать, где же проходит граница между формальными и истинными границами разумности и обоснованности применения тех эргогеных средств, которые приводятся в постоянно расширяющемся Списке запрещенных веществ и методов. Поэтому история с появлением новых видов допинга, в настоящее время уже генного, далеко не нова.
Однако пока в клинических испытаниях не получено убедительных доказательств, к каким негативным эффектам может приводить использование AICAR и GW 1516, каковы могут быть разумные дозы и побочные эффекты препаратов на основе этих субстанций, а также могут ли полученные генетические модификации закрепляться и воспроизводиться, нельзя, вероятно, однозначно отвергать возможность использования препаратов на основе AICAR и GW 1516 в спорте, особенно высших достижений. Напротив, в книге "Генная и клеточная терапия" (Templeton, 2003) убедительно доказывается важнейшая роль генетических модификаций и использования субстанций, модифицирующих собственный ответ организма, при лечении многих тяжелых заболеваний, в частности, сахарного диабета типа II, атеросклероза, гемофилии, болезнях Альцгеймера и Паркинсона. В последних научных работах на эту тему приводятся данные, которые пока не доказывают присутствие негативных эффектов влияния AICAR и GW 1516 на сердечно-сосудистую и другие системы организма; напротив, авторы полагают, что препараты на этой основе могут стать "золотым стандартом" лечения заболеваний сердца и сосудов (Warden et al., 2008). Возможно, применение стимуляторов генетической активности открывает новую эру в развитии физических возможностей спортсменов и повышении зрелищности спортивных состязаний, особенно с учетом того, что предел собственных возможностей организма человека практически достигнут.
С постоянным ужесточением требований WADA можно дойти до полного абсурда, поскольку в состав очень широко распространенного препарата нафтизин для местного лечения насморка тоже входит... запрещенная субстанция! Стратегия WADA, по нашему мнению, в случае появления новых средств, влияющих на работоспособность, должна выражаться не в немедленном запрещении любых инноваций, способствующих повышению порога возможностей человека, а в разработке и повсеместном внедрении современного, адекватного, в том числе, и на генетическом уровне, алгоритма обследования всех спортсменов, рационально организованной фармакологической поддержке и медицинской помощи во время тренировочного и соревновательного процессов.

Комментариев нет:

Отправить комментарий