"Когда потребление белка происходит выше физиологических потребностей организма в аминокислотах, то их (аминокислот) избыток утилизируется тремя основными путями:
1. Увеличение окисления, с образованием в конечном итоге CO₂ и аммиака
2. Повышение производства мочевины, что связано с необходимостью удаления процессов распада амиака образуемого при окислении белков.
3. Неоглюкогенез, то есть создание глюкозы из аминокислот.
Большая часть аминокислотных групп избыточных аминокислот, преобразуется в мочевину (цикл мочевины), в то время как их углеродные скелеты превращаются в другие промежуточные продукты, в основном в глюкозу. Это один из механизмов, необходимых для жизни, разработанный организмом для поддержания уровня глюкозы в крови в пределах узкого диапазона (т.е. гомеостаз глюкозы). Она включает в себя процесс неоглюкогенеза, т.е. синтеза глюкозы из не-гликогенных прекурсоров; в частности, некоторых специфических аминокислот (например, аланина), а также глицерина (который получен при распаде жиров) и лактата (полученного из мышц). Синтез глюкозы через неоглюкогенез постепенно растет, когда запасы глюкозы из экзогенных или эндогенных источников (гликогенолиз) становятся недостаточными. Этот процесс становится жизненно важным в такие периоды метаболического стресса, как голод." (Schutz Y, 2011) [1]
Существует гипотеза, что при потреблении избыточного кол-ва белка, его половина может быть превращена в глюкозу (ну а там недалеко до конвертации в жир, или до высоких значений глюкозы в крови, и вплоть до "выбивания" из кетоза). Обычно под "много белка" понимают >2гр/кг. Для 80 кгмового человека, речь идет о ~160 гр. белка.
Collapse
По сути, эта гипотеза строится на теоретических расчетах максимальной скорости неоглюкогенеза, предложенных Jungas RL (Jungas RL et. al., 1992) [2]. И эти предположения выводились при допущении, что все происходит в идеальных условиях, т.е. при таких условиях, где печень вообще не выполняет иных работ по обработке других субстратов, а полностью занята получением глюкозы из белка. Но ввиду ограниченного ресурса суточного окисления аминокислот в печени, Jungas выводит максимальную цифру в 135 гр/сут для глюкозы, которая через неглюкогенез может быть получена из белка (а точнее только лишь из некоторых аминокислот, и в основном речь про аланин и глютамин), плюс какую то часть глюкозы из аминокислот будут производить почки (там речь в районе 20% от общего вклада в неоглюкогенез). Но с почками ситуация обстоит так, что большая часть глюкозы, что получается через неоглюкогенез в почках, самими же почками и поглощается (John E. Gerich et al., 2001) [3].
Итак, исходя из этих теоретических расчетов, Jungas RL предположил, что порядка 58% пищевого белка может быть преобразовано в глюкозу, которая будет или накоплена в виде гликогена в печени или будет выпущена в кровоток.
Но весь вопрос в том, что таких идеальных условий (чтобы печень в течение суток окисляла только лишь белок и не занималась другими процессами) в реальной жизни создать с большей долей вероятности, чрезвычайно сложно. Помимо прочего, тут должны со 100% эффективностью сложится прочие условия: высокая усвояемость высококачественного белка и пр. В реальных же условиях на людях, фиксируется, что фактически на неоглюкогенез из белка идет около 8%-14% (8%: после приема 23 грамм белка из яиц, через неоглюкогенез было получено ~4 гр глюкозы (Fromentin C et al., 2013) [4]) (14%: из принятых 170 гр/сут белка при наличии физнагрузки в течение дня, было получено порядка 26 гр глюкозы через неоглюкогенез (Margriet AB Veldhorst et al., 2009) [5]) от входящего с пищей белка, и чуть выше у диабетиков (~25% - (Gannon MC et al., 2001) [6]).
Еще в далеком 1936 году, Conn JW et.al. [7], решили изучить что будет происходить с глюкозой в крови при употреблении 160 гр/сут белка для людей с весом ~80 кг. На рисунке ниже пунктирной линией отражена реакция организма на потребление 160 гр белка (что теоретически должно быть эквивалентно ~80 гр глюкозы). Но как мы можем убедиться, там нет каких либо скачков глюкозы в крови от приема белка, в отличие от приема 80 грамм глюкозы (сплошная линия).
Подобные результаты были получены неоднократно и позднее (Phinney SD et al., 1980) [8], (Phinney SD et al., 1983) [9], (Frank Q. Nuttall et al., 2013) [10], (Franz MJ et al., 1997) [11] и пр.)
upd: Насчет взаимосвязи высокого уровня белка в низко/безуглеводной диете и уровня кетонов ... данные на людях [8, 9, 38, 39]... согласно которым, несмотря на значительное увеличение потребления белка по сравнению, с тем сколько они употребляли до экспериментов, уровни β-гидроксибутирата (это и есть кетоновые тела, еще к ним будет оносится - ацетоацетат) растут, вплоть до 2-2.73 ммоль [эти значения характерны для стойкого кетоза] (а после физнагрузки уровни β-гидроксибутирата, растут еще выше), при чем это наблюдается, в том числе и у кетоадаптированных диетящихся (кстати и средние уровни инсулина, ниже чем до диеты, несмотря на повышенное употребление белка ... вплоть до двукратных значений)
ИЗМЕНЕНИЕ УРОВНЕЙ Β-ГИДРОКСИБУТИРАТА ПОД ФИЗНАГРУЗКОЙ [9, 8]
ПО ФАКТУ, ЕСЛИ СВЕСТИ ВСЕ ВМЕСТЕ, ТО ПОЛУЧАЕМ ПРИМЕРНО СЛЕДУЮЩЕЕ:
1. Энергетическая эффективность поэтапной конвертации белка в жиры (или через неоглюкогенез, и дальнейшее использование полученной глюкозы на синтез жировых кислот, или через предполагаемые цепочки конвертации некоторых аминокислот в жировые кислоты: Protein → Amino acid →Deamination → (1) Pyruvate and Glycerol, (2)→ Acetyl-CoA → free fatty acids)), чрезвычайно низкая. До потенциальных "преобразований в жир" дойдет не более одной трети съеденного белка (ну при условии, что он усвоится как положено).
Энергоэффективность можно оценить на следующей схеме:
[Calorie Quality Factor 4: Efficiency (The “E” in SANE) by Jonathan Bailor] [12]
Как можно увидеть выше, порядка 30% от калорийности входящего белка, тратятся только на то чтобы переварить и усвоить съеденный белок, далее на преобразование глюкозы из белка (неоглюкогенез), придется потратить еще порядка 33% калорий от исходных значений, остается 47% белка который может быть потенциально конвертирован в жир, но и преобразование глюкозы в жировые кислоты, потребует затрат в размере порядка 25% калорий от потенциально получаемой глюкозы, и по факту мы получаем значение в 35%, это именно столько может потенциально быть получено жира из 100% белка. ПОТЕНЦИАЛЬНО!!!
Часто в Интернете встречаются контраргументы, что избыток белка может быть преобразован в жир, через конвертацию некоторых т.н. кетогенных аминокислот (которые можно увидеть на рисунке ниже через Acetyl-CoA.
Да, такой путь конвертации возможен, но телу просто неэффективно использовать на сложнейшую цепочку энергетически затратных процессов аминокислоты, когда оно может получить Acetyl-CoA, вообще из очень обширного ряда источников, с намного меньшими энергозатратами, т.е. более эффективно (а наш организм чудовищно эффективная машина), из жиров, углеводов или других источников (например из лактата и/или глицерола) .
N. B. Myant "The Biology of Cholesterol and Related Steroids" , Butterworth-Heinemann, 2014 г. - 924 p. [13]
2. Окисление жиров снижается после приема высоких доз белка, хотя не так сильно как после углеводов, но при этом высокое кол-во углеводов подавляет окисление белка (Kevin J Acheson et al. 2011) [14] (а мы же помним, что печень должна, по идее, максимально работать на окисление белка, если мы хотим, чтобы половина съеденного белка пошла на неоглюкогенез, а тут мы видим снижение окисления).
3. Получить ситуацию при которой избыток белка будет конвертирован в жир (через неоглюкогенез, или через предполагаемые цепочки: Protein → Amino acid →Deamination → (1) Pyruvate and Glycerol, (2)→ Acetyl-CoA → free fatty acids), в дефиците произойти по сути не может, т.к. ввиду реального дефицита калорий, все пойдет на текущее энергообеспечение и ресинтез гликогена, а на реальное, статистически значимое жироотложение, которое могло бы оказать тормозящий эффект на диету, просто ничего не останется.
4. В профиците калорий, это также практически нереально осуществить: ввиду как и специфики метаболизма печени и ограниченности ее ресурса в окислении белка (Jungas RL et. al., 1992), так и того кол-ва белка, что придется употребить (речь про порядка >5000 ккал/сут только из белка [Excess Protein and Fat Storage – Q&A by L.Mcdonald] [15]).
5. Потребление белка выше рекомендуемых значений (выше 0,8 гр/кг по DRI) и даже в 4-5 раз, не приводит к повышенному неоглюкогенезу.
6. Аминокислоты могут перерабатываться в глюкозу через т.н. глюкозо-аланиновый цикл из аланина, который не увеличивает кол-во глюкозы в мышцах.
7. Неоглюкогенез это очень "неспешный", стабильный (т.е. стабильность сохраняется при очень широком диапазоне отклонений), медленный и энергозатратный процесс, регулируемый целым рядом гормонов (Nuttall FQ et al. 2008) [16], в том числе глюкагоном (основной гормон, ответственный за предотвращение низкого уровня сахара в крови).
8. На окисление белка тело тратит меньше энергии чем на окисление углеводов [17], т.е. при переизбытке белка, он какое-то время в большей степени идет на энергонужды.
9. Большая часть белка из ЖКТ (~80%) идет на белковый синтез, на прочие пластические процессы, небольшая часть на энергетику и всякие там циклы кребса, на поддержку аминокислотного и глюкозо-аланинового пулов, на декарбоксилирование, дезаминирование, трансаминирование (переаминирование), на синтез гормонов и нейромедиаторов, синтез простетических групп сложных белков - хромопротеинов и нуклеопротеинов, синтез веществ, содержащих макроэргическую связь и являющихся источником энергии для клеток, в обезвреживании токсических веществ и т.д., а те излишки что не смогли быть окислены печенью, и не смогли быть использованы на энергетику, выводятся с мочой. Какая то часть аминокислот конечно участвует в синтезе сложных липидов, но эта часть будет настолько мала и несущественна, что можно ее и не учитывать в суточном липогенезе.
Процесс оборота белка (синтез и деградация белков). Скорость окисления белков в первую очередь зависит от количества белка имеющегося в наличии: на схеме отображен процесс трансформации белков и выведение конечных продуктов. AA = аминокислоты.(Schutz Y, 2011) [1]
11. Современные исследования, где людям создавали целенаправленный профицит за счет белка, и высокобелковая профицитная группа либо набирала вес, но больше за счет роста LBM (сухой массы тела) (и с жиром естественно, т.е. если вы будте питаться с регулярным значительным профицитом, в т.ч. за счет белка, то вы конечно же будете жиреть/набирать вес, но не потому, что избыток белка будет конвертироваться в жир, а потому что мы получаем худшую утилизацию и оксидацию остальных нутриентов (углеводы и жиры), и как следствие, лучшее их сохранение в "запасах", собственно отчасти именно это и произошло в исследовании (где профицит был создан +1000 ккал/сут из белка в высокобелковой группе), но они при этом умудрились большую часть прибавочного веса получить за счет роста LBM) [(Bray GA et al., 2012) [18] +1000 ккал профицит из белка], или композиция тела вообще не менялась [+800 ккал (Antonio J et al., 2014) [19]].
ССЫЛКИ:
1. Schutz Y. Protein turnover, ureagenesis and gluconeogenesis. Int J Vitam Nutr Res. 2011 Mar;81(2-3):101-7. doi: 10.1024/0300-9831/a000064. [PubMed]
2. Jungas RL et. al. Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol Rev. 1992 Apr;72(2):419-48. [PubMed).
3. John E. Gerich et al. Renal Gluconeogenesis: Its importance in human glucose homeostasis. Diabetes Care 2001 Feb; 24(2): 382-391. doi.org/10.2337/diacare.24.2.382 [diabetesjournals.org]
4. Fromentin C et al. Dietary proteins contribute little to glucose production, even under optimal gluconeogenic conditions in healthy humans. Diabetes. 2013 May;62(5):1435-42. doi: 10.2337/db12-1208. Epub 2012 Dec 28. [PubMed)]
5. Veldhorst MA et al. Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. Am J Clin Nutr. 2009 Sep;90(3):519-26. doi: 10.3945/ajcn.2009.27834. Epub 2009 Jul 29. [PubMed]
6. Gannon MC et al. Effect of protein ingestion on the glucose appearance rate in people with type 2 diabetes. J Clin Endocrinol Metab. 2001 Mar;86(3):1040-7. [PubMed]
7. Conn JW et al. The glycemic response to isoglucogenic quantities of protein and carbohydrate. J Clin Invest. 1936 Nov;15(6):665-71. [PubMed]
8. Phinney SD et al. Capacity for moderate exercise in obese subjects after adaptation to a hypocaloric, ketogenic diet. J Clin Invest. 1980 Nov;66(5):1152-61. [PubMed].
9. Phinney SD et al. The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism. 1983 Aug;32(8):769-76. [PubMed].
10. Frank Q. Nuttall et al. Dietary Protein and the Blood Glucose Concentration. Diabetes. 2013 May; 62(5): 1371–1372. Published online 2013 Apr 16. doi: 10.2337/db12-1829. PMCID: PMC3636610. [PubMed].
11. Franz MJ. Protein: metabolism and effect on blood glucose levels. Diabetes Educ. 1997 Nov-Dec;23(6):643-6, 648, 650-1. [PubMed]
12. Calorie Quality Factor 4: Efficiency (The “E” in SANE) by Jonathan Bailor.
13. N. B. Myant "The Biology of Cholesterol and Related Steroids" , Butterworth-Heinemann, 2014 г. - 924 p..
14. Acheson KJ et al. Protein choices targeting thermogenesis and metabolism. Am J Clin Nutr. 2011 Mar;93(3):525-34. doi: 10.3945/ajcn.110.005850. Epub 2011 Jan 12. [PubMed]
15. Excess Protein and Fat Storage – Q&A by L.Mcdonald.
16. Nuttall FQ et al. Regulation of hepatic glucose production and the role of gluconeogenesis in humans: is the rate of gluconeogenesis constant? Diabetes Metab Res Rev. 2008 Sep;24(6):438-58. doi: 10.1002/dmrr.863. [PubMed]
17. W.P.T. James. ADAPTATION TO DIFFERENT ENERGY INTAKES: the mechanisms, extent and social consequences. Joint FAO/WHO/UNU Expert Consultation on Energy and Protein Requirements. Rome, 5 to 17 October 1981 [FAO.org]
18. Bray GA et al. Effect of dietary protein content on weight gain, energy expenditure, and body composition during overeating: a randomized controlled trial. JAMA. 2012 Jan 4;307(1):47-55. doi: 10.1001/jama.2011.1918. [PubMed]
19. Antonio J et al. The effects of consuming a high protein diet (4.4 g/kg/d) on body composition in resistance-trained individuals. J Int Soc Sports Nutr. 2014 May 12;11:19. doi: 10.1186/1550-2783-11-19. eCollection 2014. [PubMed]
20. Acheson KJ, Schutz Y, Bessard T, Anantharaman K, Flatt JP, Jéquier E. Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. Am J Clin Nutr. 1988 Aug;48(2):240-7. PubMed PMID: 3165600. [PubMed]
21. Cox, Michael M., Apoundert L. Lehninger, and David L. Nelson. Principles of Biochemistry. 3rd ed. New York: W.H. Freeman & Company, 2000. Print. [Amazone.com]
22. FAO/OMS/UNU. Necessidades de energia e proteína: Série de relatos técnicos 724. Genebra: Organização Mundial da Saúde, 1998.
23. Feinman RD, Fine EJ. “A calorie is a calorie” violates the second law of thermodynamics. Nutr J. 2004 Jul 28;3:9. PubMed PMID: 15282028; PubMed Central PMCID: PMC506782. [PubMed]
24. Fine EJ, Feinman RD. Thermodynamics of weight loss diets. Nutr Metab (Lond).2004 Dec 8;1(1):15. PubMed PMID: 15588283 [PubMed]
25. Flatt JP. Conversion of carbohydrate to fat in adipose tissue: an energy-yielding and, therefore, self-limiting process. J Lipid Res. 1970 Mar;11(2):131-43. PubMed PMID: 4392141. [PubMed]
26. Halton TL, Hu FB. The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr. 2004 Oct;23(5):373-85. Review. PubMed PMID: 15466943. [PubMed]
27. Hellerstein MK. De novo lipogenesis in humans: metabolic and regulatory aspects. Eur J Clin Nutr. 1999 Apr;53 Suppl 1:S53-65. Review. PubMed PMID:10365981. [PubMed]
28. Hue L. Regulation of gluconeogenesis in liver: In Handbook of Physiology – Section 7: The Endocrine System – Volume II: The Endocrine Pancreas and Regulation of Metabolism. Oxford: Oxford University Press, pp. 649-657, 2001. [Wiley.com]
29. Jéquier E, Acheson K, Schutz Y. Assessment of energy expenditure and fuel utilization in man. Annu Rev Nutr. 1987;7:187-208. Review. PubMed PMID: 3300732. [PubMed]
30. Johnston CS, Day CS, Swan PD. Postprandial thermogenesis is increased 100% on a high-protein, low-fat diet versus a high-carbohydrate, low-fat diet in healthy, young women. J Am Coll Nutr. 2002 Feb;21(1):55-61. PubMed PMID: 11838888. [PubMed]
31. Keesey RE, Powley TL. The regulation of body weight. Annu Rev Psychol.1986;37:109-33. PubMed PMID: 3963779. [PubMed]
32. Obesity and leanness. Basic aspects. Stock, M., Rothwell, N., Author Affiliation: Dep. Physiology, St. George’s Hospital Medical School, London Univ., London, UK. [Wiley.com]
33. Paddon-Jones D, Westman E, Mattes RD, Wolfe RR, Astrup A, Westerterp-Plantenga M. Protein, weight management, and satiety. Am J Clin Nutr. 2008 May;87(5):1558S-1561S. Review. PubMed PMID: 18469287. [PubMed]
34. Schutz Y, Jequier E. Resting Energy Expenditure, thermic Effect of Food, and Total Energy Expenditure In: Bray GA, Couchard d, James WP, eds. Handbook of Obesity. New York: Marcel Dekker, 1997: 379-396. [Google.book]
35. Tappy L, Jéquier E. Fructose and dietary thermogenesis. Am J Clin Nutr. 1993 Nov;58(5 Suppl):766S-770S. Review. PubMed PMID: 8213608. [PubMed]
36. Jéquier E. Pathways to obesity. Int J Obes Relat Metab Disord. 2002 Sep;26 Suppl 2:S12-7. Review. PubMed PMID: 12174324. [PubMed]
37. Sareen S. Gropper, Jack L. Smith, Timothy P. Carr. Advanced Nutrition and Human Metabolism. Cengage Learning, 2016. 640 p. [Google.book]
38. Coleman MD, Nickols-Richardson SM. Urinary ketones reflect serum ketone concentration but do not relate to weight loss in overweight premenopausal women following a low-carbohydrate/high-protein diet. J Am Diet Assoc. 2005 Apr;105(4):608-11 [PubMed].
39. Veldhorst MA, Westerterp KR, Westerterp-Plantenga MS. Gluconeogenesis and protein-induced satiety. Br J Nutr. 2012 Feb;107(4):595-600. doi: 10.1017/S0007114511003254. Epub 2011 Jul 18 [PubMed].
Итак, исходя из этих теоретических расчетов, Jungas RL предположил, что порядка 58% пищевого белка может быть преобразовано в глюкозу, которая будет или накоплена в виде гликогена в печени или будет выпущена в кровоток.
Но весь вопрос в том, что таких идеальных условий (чтобы печень в течение суток окисляла только лишь белок и не занималась другими процессами) в реальной жизни создать с большей долей вероятности, чрезвычайно сложно. Помимо прочего, тут должны со 100% эффективностью сложится прочие условия: высокая усвояемость высококачественного белка и пр. В реальных же условиях на людях, фиксируется, что фактически на неоглюкогенез из белка идет около 8%-14% (8%: после приема 23 грамм белка из яиц, через неоглюкогенез было получено ~4 гр глюкозы (Fromentin C et al., 2013) [4]) (14%: из принятых 170 гр/сут белка при наличии физнагрузки в течение дня, было получено порядка 26 гр глюкозы через неоглюкогенез (Margriet AB Veldhorst et al., 2009) [5]) от входящего с пищей белка, и чуть выше у диабетиков (~25% - (Gannon MC et al., 2001) [6]).
Еще в далеком 1936 году, Conn JW et.al. [7], решили изучить что будет происходить с глюкозой в крови при употреблении 160 гр/сут белка для людей с весом ~80 кг. На рисунке ниже пунктирной линией отражена реакция организма на потребление 160 гр белка (что теоретически должно быть эквивалентно ~80 гр глюкозы). Но как мы можем убедиться, там нет каких либо скачков глюкозы в крови от приема белка, в отличие от приема 80 грамм глюкозы (сплошная линия).
Подобные результаты были получены неоднократно и позднее (Phinney SD et al., 1980) [8], (Phinney SD et al., 1983) [9], (Frank Q. Nuttall et al., 2013) [10], (Franz MJ et al., 1997) [11] и пр.)
upd: Насчет взаимосвязи высокого уровня белка в низко/безуглеводной диете и уровня кетонов ... данные на людях [8, 9, 38, 39]... согласно которым, несмотря на значительное увеличение потребления белка по сравнению, с тем сколько они употребляли до экспериментов, уровни β-гидроксибутирата (это и есть кетоновые тела, еще к ним будет оносится - ацетоацетат) растут, вплоть до 2-2.73 ммоль [эти значения характерны для стойкого кетоза] (а после физнагрузки уровни β-гидроксибутирата, растут еще выше), при чем это наблюдается, в том числе и у кетоадаптированных диетящихся (кстати и средние уровни инсулина, ниже чем до диеты, несмотря на повышенное употребление белка ... вплоть до двукратных значений)
ИЗМЕНЕНИЕ УРОВНЕЙ Β-ГИДРОКСИБУТИРАТА ПОД ФИЗНАГРУЗКОЙ [9, 8]
ПО ФАКТУ, ЕСЛИ СВЕСТИ ВСЕ ВМЕСТЕ, ТО ПОЛУЧАЕМ ПРИМЕРНО СЛЕДУЮЩЕЕ:
1. Энергетическая эффективность поэтапной конвертации белка в жиры (или через неоглюкогенез, и дальнейшее использование полученной глюкозы на синтез жировых кислот, или через предполагаемые цепочки конвертации некоторых аминокислот в жировые кислоты: Protein → Amino acid →Deamination → (1) Pyruvate and Glycerol, (2)→ Acetyl-CoA → free fatty acids)), чрезвычайно низкая. До потенциальных "преобразований в жир" дойдет не более одной трети съеденного белка (ну при условии, что он усвоится как положено).
Энергоэффективность можно оценить на следующей схеме:
[Calorie Quality Factor 4: Efficiency (The “E” in SANE) by Jonathan Bailor] [12]
Как можно увидеть выше, порядка 30% от калорийности входящего белка, тратятся только на то чтобы переварить и усвоить съеденный белок, далее на преобразование глюкозы из белка (неоглюкогенез), придется потратить еще порядка 33% калорий от исходных значений, остается 47% белка который может быть потенциально конвертирован в жир, но и преобразование глюкозы в жировые кислоты, потребует затрат в размере порядка 25% калорий от потенциально получаемой глюкозы, и по факту мы получаем значение в 35%, это именно столько может потенциально быть получено жира из 100% белка. ПОТЕНЦИАЛЬНО!!!
Часто в Интернете встречаются контраргументы, что избыток белка может быть преобразован в жир, через конвертацию некоторых т.н. кетогенных аминокислот (которые можно увидеть на рисунке ниже через Acetyl-CoA.
Да, такой путь конвертации возможен, но телу просто неэффективно использовать на сложнейшую цепочку энергетически затратных процессов аминокислоты, когда оно может получить Acetyl-CoA, вообще из очень обширного ряда источников, с намного меньшими энергозатратами, т.е. более эффективно (а наш организм чудовищно эффективная машина), из жиров, углеводов или других источников (например из лактата и/или глицерола) .
N. B. Myant "The Biology of Cholesterol and Related Steroids" , Butterworth-Heinemann, 2014 г. - 924 p. [13]
2. Окисление жиров снижается после приема высоких доз белка, хотя не так сильно как после углеводов, но при этом высокое кол-во углеводов подавляет окисление белка (Kevin J Acheson et al. 2011) [14] (а мы же помним, что печень должна, по идее, максимально работать на окисление белка, если мы хотим, чтобы половина съеденного белка пошла на неоглюкогенез, а тут мы видим снижение окисления).
3. Получить ситуацию при которой избыток белка будет конвертирован в жир (через неоглюкогенез, или через предполагаемые цепочки: Protein → Amino acid →Deamination → (1) Pyruvate and Glycerol, (2)→ Acetyl-CoA → free fatty acids), в дефиците произойти по сути не может, т.к. ввиду реального дефицита калорий, все пойдет на текущее энергообеспечение и ресинтез гликогена, а на реальное, статистически значимое жироотложение, которое могло бы оказать тормозящий эффект на диету, просто ничего не останется.
4. В профиците калорий, это также практически нереально осуществить: ввиду как и специфики метаболизма печени и ограниченности ее ресурса в окислении белка (Jungas RL et. al., 1992), так и того кол-ва белка, что придется употребить (речь про порядка >5000 ккал/сут только из белка [Excess Protein and Fat Storage – Q&A by L.Mcdonald] [15]).
5. Потребление белка выше рекомендуемых значений (выше 0,8 гр/кг по DRI) и даже в 4-5 раз, не приводит к повышенному неоглюкогенезу.
6. Аминокислоты могут перерабатываться в глюкозу через т.н. глюкозо-аланиновый цикл из аланина, который не увеличивает кол-во глюкозы в мышцах.
7. Неоглюкогенез это очень "неспешный", стабильный (т.е. стабильность сохраняется при очень широком диапазоне отклонений), медленный и энергозатратный процесс, регулируемый целым рядом гормонов (Nuttall FQ et al. 2008) [16], в том числе глюкагоном (основной гормон, ответственный за предотвращение низкого уровня сахара в крови).
8. На окисление белка тело тратит меньше энергии чем на окисление углеводов [17], т.е. при переизбытке белка, он какое-то время в большей степени идет на энергонужды.
9. Большая часть белка из ЖКТ (~80%) идет на белковый синтез, на прочие пластические процессы, небольшая часть на энергетику и всякие там циклы кребса, на поддержку аминокислотного и глюкозо-аланинового пулов, на декарбоксилирование, дезаминирование, трансаминирование (переаминирование), на синтез гормонов и нейромедиаторов, синтез простетических групп сложных белков - хромопротеинов и нуклеопротеинов, синтез веществ, содержащих макроэргическую связь и являющихся источником энергии для клеток, в обезвреживании токсических веществ и т.д., а те излишки что не смогли быть окислены печенью, и не смогли быть использованы на энергетику, выводятся с мочой. Какая то часть аминокислот конечно участвует в синтезе сложных липидов, но эта часть будет настолько мала и несущественна, что можно ее и не учитывать в суточном липогенезе.
Процесс оборота белка (синтез и деградация белков). Скорость окисления белков в первую очередь зависит от количества белка имеющегося в наличии: на схеме отображен процесс трансформации белков и выведение конечных продуктов. AA = аминокислоты.(Schutz Y, 2011) [1]
11. Современные исследования, где людям создавали целенаправленный профицит за счет белка, и высокобелковая профицитная группа либо набирала вес, но больше за счет роста LBM (сухой массы тела) (и с жиром естественно, т.е. если вы будте питаться с регулярным значительным профицитом, в т.ч. за счет белка, то вы конечно же будете жиреть/набирать вес, но не потому, что избыток белка будет конвертироваться в жир, а потому что мы получаем худшую утилизацию и оксидацию остальных нутриентов (углеводы и жиры), и как следствие, лучшее их сохранение в "запасах", собственно отчасти именно это и произошло в исследовании (где профицит был создан +1000 ккал/сут из белка в высокобелковой группе), но они при этом умудрились большую часть прибавочного веса получить за счет роста LBM) [(Bray GA et al., 2012) [18] +1000 ккал профицит из белка], или композиция тела вообще не менялась [+800 ккал (Antonio J et al., 2014) [19]].
ССЫЛКИ:
1. Schutz Y. Protein turnover, ureagenesis and gluconeogenesis. Int J Vitam Nutr Res. 2011 Mar;81(2-3):101-7. doi: 10.1024/0300-9831/a000064. [PubMed]
2. Jungas RL et. al. Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol Rev. 1992 Apr;72(2):419-48. [PubMed).
3. John E. Gerich et al. Renal Gluconeogenesis: Its importance in human glucose homeostasis. Diabetes Care 2001 Feb; 24(2): 382-391. doi.org/10.2337/diacare.24.2.382 [diabetesjournals.org]
4. Fromentin C et al. Dietary proteins contribute little to glucose production, even under optimal gluconeogenic conditions in healthy humans. Diabetes. 2013 May;62(5):1435-42. doi: 10.2337/db12-1208. Epub 2012 Dec 28. [PubMed)]
5. Veldhorst MA et al. Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. Am J Clin Nutr. 2009 Sep;90(3):519-26. doi: 10.3945/ajcn.2009.27834. Epub 2009 Jul 29. [PubMed]
6. Gannon MC et al. Effect of protein ingestion on the glucose appearance rate in people with type 2 diabetes. J Clin Endocrinol Metab. 2001 Mar;86(3):1040-7. [PubMed]
7. Conn JW et al. The glycemic response to isoglucogenic quantities of protein and carbohydrate. J Clin Invest. 1936 Nov;15(6):665-71. [PubMed]
8. Phinney SD et al. Capacity for moderate exercise in obese subjects after adaptation to a hypocaloric, ketogenic diet. J Clin Invest. 1980 Nov;66(5):1152-61. [PubMed].
9. Phinney SD et al. The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism. 1983 Aug;32(8):769-76. [PubMed].
10. Frank Q. Nuttall et al. Dietary Protein and the Blood Glucose Concentration. Diabetes. 2013 May; 62(5): 1371–1372. Published online 2013 Apr 16. doi: 10.2337/db12-1829. PMCID: PMC3636610. [PubMed].
11. Franz MJ. Protein: metabolism and effect on blood glucose levels. Diabetes Educ. 1997 Nov-Dec;23(6):643-6, 648, 650-1. [PubMed]
12. Calorie Quality Factor 4: Efficiency (The “E” in SANE) by Jonathan Bailor.
13. N. B. Myant "The Biology of Cholesterol and Related Steroids" , Butterworth-Heinemann, 2014 г. - 924 p..
14. Acheson KJ et al. Protein choices targeting thermogenesis and metabolism. Am J Clin Nutr. 2011 Mar;93(3):525-34. doi: 10.3945/ajcn.110.005850. Epub 2011 Jan 12. [PubMed]
15. Excess Protein and Fat Storage – Q&A by L.Mcdonald.
16. Nuttall FQ et al. Regulation of hepatic glucose production and the role of gluconeogenesis in humans: is the rate of gluconeogenesis constant? Diabetes Metab Res Rev. 2008 Sep;24(6):438-58. doi: 10.1002/dmrr.863. [PubMed]
17. W.P.T. James. ADAPTATION TO DIFFERENT ENERGY INTAKES: the mechanisms, extent and social consequences. Joint FAO/WHO/UNU Expert Consultation on Energy and Protein Requirements. Rome, 5 to 17 October 1981 [FAO.org]
18. Bray GA et al. Effect of dietary protein content on weight gain, energy expenditure, and body composition during overeating: a randomized controlled trial. JAMA. 2012 Jan 4;307(1):47-55. doi: 10.1001/jama.2011.1918. [PubMed]
19. Antonio J et al. The effects of consuming a high protein diet (4.4 g/kg/d) on body composition in resistance-trained individuals. J Int Soc Sports Nutr. 2014 May 12;11:19. doi: 10.1186/1550-2783-11-19. eCollection 2014. [PubMed]
20. Acheson KJ, Schutz Y, Bessard T, Anantharaman K, Flatt JP, Jéquier E. Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. Am J Clin Nutr. 1988 Aug;48(2):240-7. PubMed PMID: 3165600. [PubMed]
21. Cox, Michael M., Apoundert L. Lehninger, and David L. Nelson. Principles of Biochemistry. 3rd ed. New York: W.H. Freeman & Company, 2000. Print. [Amazone.com]
22. FAO/OMS/UNU. Necessidades de energia e proteína: Série de relatos técnicos 724. Genebra: Organização Mundial da Saúde, 1998.
23. Feinman RD, Fine EJ. “A calorie is a calorie” violates the second law of thermodynamics. Nutr J. 2004 Jul 28;3:9. PubMed PMID: 15282028; PubMed Central PMCID: PMC506782. [PubMed]
24. Fine EJ, Feinman RD. Thermodynamics of weight loss diets. Nutr Metab (Lond).2004 Dec 8;1(1):15. PubMed PMID: 15588283 [PubMed]
25. Flatt JP. Conversion of carbohydrate to fat in adipose tissue: an energy-yielding and, therefore, self-limiting process. J Lipid Res. 1970 Mar;11(2):131-43. PubMed PMID: 4392141. [PubMed]
26. Halton TL, Hu FB. The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr. 2004 Oct;23(5):373-85. Review. PubMed PMID: 15466943. [PubMed]
27. Hellerstein MK. De novo lipogenesis in humans: metabolic and regulatory aspects. Eur J Clin Nutr. 1999 Apr;53 Suppl 1:S53-65. Review. PubMed PMID:10365981. [PubMed]
28. Hue L. Regulation of gluconeogenesis in liver: In Handbook of Physiology – Section 7: The Endocrine System – Volume II: The Endocrine Pancreas and Regulation of Metabolism. Oxford: Oxford University Press, pp. 649-657, 2001. [Wiley.com]
29. Jéquier E, Acheson K, Schutz Y. Assessment of energy expenditure and fuel utilization in man. Annu Rev Nutr. 1987;7:187-208. Review. PubMed PMID: 3300732. [PubMed]
30. Johnston CS, Day CS, Swan PD. Postprandial thermogenesis is increased 100% on a high-protein, low-fat diet versus a high-carbohydrate, low-fat diet in healthy, young women. J Am Coll Nutr. 2002 Feb;21(1):55-61. PubMed PMID: 11838888. [PubMed]
31. Keesey RE, Powley TL. The regulation of body weight. Annu Rev Psychol.1986;37:109-33. PubMed PMID: 3963779. [PubMed]
32. Obesity and leanness. Basic aspects. Stock, M., Rothwell, N., Author Affiliation: Dep. Physiology, St. George’s Hospital Medical School, London Univ., London, UK. [Wiley.com]
33. Paddon-Jones D, Westman E, Mattes RD, Wolfe RR, Astrup A, Westerterp-Plantenga M. Protein, weight management, and satiety. Am J Clin Nutr. 2008 May;87(5):1558S-1561S. Review. PubMed PMID: 18469287. [PubMed]
34. Schutz Y, Jequier E. Resting Energy Expenditure, thermic Effect of Food, and Total Energy Expenditure In: Bray GA, Couchard d, James WP, eds. Handbook of Obesity. New York: Marcel Dekker, 1997: 379-396. [Google.book]
35. Tappy L, Jéquier E. Fructose and dietary thermogenesis. Am J Clin Nutr. 1993 Nov;58(5 Suppl):766S-770S. Review. PubMed PMID: 8213608. [PubMed]
36. Jéquier E. Pathways to obesity. Int J Obes Relat Metab Disord. 2002 Sep;26 Suppl 2:S12-7. Review. PubMed PMID: 12174324. [PubMed]
37. Sareen S. Gropper, Jack L. Smith, Timothy P. Carr. Advanced Nutrition and Human Metabolism. Cengage Learning, 2016. 640 p. [Google.book]
38. Coleman MD, Nickols-Richardson SM. Urinary ketones reflect serum ketone concentration but do not relate to weight loss in overweight premenopausal women following a low-carbohydrate/high-protein diet. J Am Diet Assoc. 2005 Apr;105(4):608-11 [PubMed].
39. Veldhorst MA, Westerterp KR, Westerterp-Plantenga MS. Gluconeogenesis and protein-induced satiety. Br J Nutr. 2012 Feb;107(4):595-600. doi: 10.1017/S0007114511003254. Epub 2011 Jul 18 [PubMed].
Комментариев нет:
Отправить комментарий